一个分数阶方程组积分边值问题的正解(英文)  被引量:2

Positive Solutions for a System of Fractional Integral Boundary Value Problems

在线阅读下载全文

作  者:程伟 徐家发 Donal O’Regan CHENG Wei;XU Jiafa;Donal O'Regan(School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China;School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland)

机构地区:[1]重庆师范大学数学科学学院,重庆401331 [2]School of Mathematics,Statistics and Applied Mathematics,National University of Ireland,Galway,Ireland

出  处:《应用数学》2018年第2期341-349,共9页Mathematica Applicata

基  金:Supported by the National Natural Science Foundation of China(11601048); Natural Science Foundation of Chongqing(cstc2016jcyj A0181); the Science and Technology Research Program of Chongqing Municipal Education Commission(KJ1703050); Natural Science Found

摘  要:本文研究一个分数阶方程组积分边值问题.利用不动点指数方法,采用非负凹凸函数刻画非线性项间的耦合行为,并借助单调有界原理,获得该问题正解的存在性结果,并构造了近似解的迭代序列,推广和完善了已有的一些结果.In this paper fixed point index is used to establish the existence of positive solutions for a system of fractional integral boundary value problems. Concave and convex functions are adopted to characterize the coupling behavior of our nonlinearities. Moreover,by means of the monotone iteration method, we also establish an iterative sequence for approximating the solution. The results here extend the existing study.

关 键 词:分数阶边值问题 正解 不动点定理 单调有界原理 凹凸函数 

分 类 号:O175.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象