检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:史艳华[1] 王芬玲[1] 赵艳敏[1] SHI Yanhua;WANG Fenling;ZHAO Yanmin(School of Mathematics and Statistics, Xuchang University, Xuchang 461000, China)
机构地区:[1]许昌学院数学与统计学院,河南许昌461000
出 处:《应用数学》2018年第3期638-652,共15页Mathematica Applicata
基 金:Supported by the National Natural Science Foundation of China(11101381);the Natural Foundation of Education Department of Henan Province(17A110011)
摘 要:基于双线性元和零阶R-T元,建立了非线性Benjamin-Bona-Mahony(BBM)方程的一个新的低阶混合元方法.借助积分恒等式技巧,得到了一个对超逼近分析比较重要的误差估计.对于半离散格式,证明了解的存在性,唯一性和稳定性,然后得到了精确解u在H1模意义下和压力变量p=?u_t在L^2模意义下具有O(h^2)的超逼近和超收敛结果.对于向后欧拉和Crank-Nicolson全离散格式,分别探讨了解的稳定性,且在对时间步长没有任何限制的前提下得到了超逼近结果.A new low order mixed finite element method(FEM) is proposed for solving nonlinear Benjamin-Bona-Mahony(BBM) equation based on bilinear element and zero order Raviart-Thomas(R-T) element. Applying integral identity technique, an important estimate is proved which is useful for the superclose analysis. For semi-discrete scheme,the existence, uniqueness, stability of the solution are discussed. Then, the superclose properties and global superconvergence results with order O(h2) are deduced for both the exact solution u in H1-norm and the stress variable ?p = ?ut in L2-norm. For backward Euler and Crank-Nicolson fully-discrete schemes, the stability of the solution is discussed and the superclose results are derived without any time-step restriction, respectively.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43