Targeting the noradrenergic system for anti-inflammatory and neuroprotective effects: implications for Parkinson's disease  被引量:6

Targeting the noradrenergic system for anti-inflammatory and neuroprotective effects: implications for Parkinson's disease

在线阅读下载全文

作  者:Eoin O'Neill Andrew Harkin 

机构地区:[1]Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College

出  处:《Neural Regeneration Research》2018年第8期1332-1337,共6页中国神经再生研究(英文版)

基  金:Eoin O’Neill was supported by a Trinity College postgraduate award

摘  要:Degeneration of the locus coeruleus noradrenergic system is thought to play a key role in the pathogenesis of Parkinson's disease (PD), whereas pharmacological approaches to increase noradrenaline bioavailability may provide neuroprotection. Noradrenaline inhibits microglial activation and suppresses pro-inflamma- tory mediator production (e.g., tumor necrosis factor-a, interleukin-1β & inducible nitric oxide synthase activity), thus limiting the cytotoxicity of midbrain dopaminergic neurons in response to an inflamma- tory stimulus. Neighbouring astrocyte populations promote a neurotrophic environment in response to β2-adrenoceptor (β2-AR) stimulation via the production of growth factors (e.g., brain derived neurotrophic factor, cerebral dopamine neurotrophic factor & glial cell derived neurotrophic factor which have shown promising neuroprotective and neuro-restorative effects in the nigrostriatal dopaminergic system. More recent findings have demonstrated a role for the β2-AR in down-regulating expression levels of the human a-synuclein gene SNCA and relative a-synuclein protein abundance. Given that a-synuclein is a major protein constituent of Lewy body pathology, a hallmark neuropathological feature in Parkinson's disease, these findings could open up new avenues for pharmacological intervention strategies aimed at alleviating the burden of a-synucleinopathies in the Parkinsonian brain. In essence, the literature reviewed herein supports our hypothesis of a tripartite neuroprotective role for noradrenaline in combating PD-related neuropathology and motor dysfunction via (1) inhibiting nigral microglial activation & pro-inflammatory mediator production, (2) promoting the synthesis of neurotrophic factors from midbrain astrocytes and (3) downregulating a-synuclein gene expression and protein abundance in a β2-AR-dependent manner. Thus, taken together, either pharmacologically enhancing extra-synaptic noradrenaline bioavailability or targeting glial β2-ARs directly makDegeneration of the locus coeruleus noradrenergic system is thought to play a key role in the pathogenesis of Parkinson's disease (PD), whereas pharmacological approaches to increase noradrenaline bioavailability may provide neuroprotection. Noradrenaline inhibits microglial activation and suppresses pro-inflamma- tory mediator production (e.g., tumor necrosis factor-a, interleukin-1β & inducible nitric oxide synthase activity), thus limiting the cytotoxicity of midbrain dopaminergic neurons in response to an inflamma- tory stimulus. Neighbouring astrocyte populations promote a neurotrophic environment in response to β2-adrenoceptor (β2-AR) stimulation via the production of growth factors (e.g., brain derived neurotrophic factor, cerebral dopamine neurotrophic factor & glial cell derived neurotrophic factor which have shown promising neuroprotective and neuro-restorative effects in the nigrostriatal dopaminergic system. More recent findings have demonstrated a role for the β2-AR in down-regulating expression levels of the human a-synuclein gene SNCA and relative a-synuclein protein abundance. Given that a-synuclein is a major protein constituent of Lewy body pathology, a hallmark neuropathological feature in Parkinson's disease, these findings could open up new avenues for pharmacological intervention strategies aimed at alleviating the burden of a-synucleinopathies in the Parkinsonian brain. In essence, the literature reviewed herein supports our hypothesis of a tripartite neuroprotective role for noradrenaline in combating PD-related neuropathology and motor dysfunction via (1) inhibiting nigral microglial activation & pro-inflammatory mediator production, (2) promoting the synthesis of neurotrophic factors from midbrain astrocytes and (3) downregulating a-synuclein gene expression and protein abundance in a β2-AR-dependent manner. Thus, taken together, either pharmacologically enhancing extra-synaptic noradrenaline bioavailability or targeting glial β2-ARs directly mak

关 键 词:NORADRENALINE MICROGLIA ASTROCYTES inflammation Parkinson's disease NEUROPROTECTION animalmodel dopamie 

分 类 号:R742.5[医药卫生—神经病学与精神病学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象