检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨雄[1] YANG Xiong(Loudi Vocational and Technical College,Loudi 417000 Hunan,China)
出 处:《贵阳学院学报(自然科学版)》2018年第2期1-3,共3页Journal of Guiyang University:Natural Sciences
摘 要:关于定积分有许多著名且重要的不等式,几乎每个不等式都有很多种证法,可以用定义,可积条件,定积分性质,定理,借助已知不等式,计算定积分以及借助各种技巧来证明。本文采用多种方法证明积分不等式∫abxf(x)dx≥a+b/2∫abf(x)dx(其中,f(x)在区间[a,b]上连续,且单调增加),借此归纳积分不等式证明方法。There are many famous and important about definite integral inequality, there are many kinds of almost every inequality proof, can be used to define,integrable condition, the definite integral property, theorem, with the aid of known inequality,calculation of definite integral, and use a variety of techniques to prove. In this paper, the integral inequality ∫abxf(x)dx≥a+b/2∫abf(x)dx (f(x) is continuous on the interval [a, b], and monotonically increasing) .Thisinduces the proof of the integral inequality.
关 键 词:积分不等式 积分中值定理 变限积分 CHEBYSHEV不等式
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7