检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周童 钟志华[2] ZHOU Tong;ZHONG Zhihua(School of Mathematical Sciences,Fudan University,Shanghai 200433,China;School of Sciences,Nantong University,Nantong 226019,China)
机构地区:[1]复旦大学数学科学学院,上海200433 [2]南通大学理学院,江苏南通226019
出 处:《南通大学学报(自然科学版)》2018年第2期90-94,共5页Journal of Nantong University(Natural Science Edition)
摘 要:提出两种无限简单连分数的求值方法.连分数首先被表示为数列的递推关系式.如果数列为收敛数列,那么无限连分数的值即为数列极限.方法一是,利用求方程的方法求解数列的极限,从而得到无限连分数的值;方法二是,先利用斐波那契数列直接求出连分数对应数列的通项表达式,进而直接取通项的极限得到连分数的值.同时,利用图像法可以直观地表示连分数的迭代求值过程.另外,基于方法一的思想,构造了对于一般函数方程的迭代格式,并指出这种迭代格式可以自然引导至微分方程中的皮卡序列方法.Two methods were proposed for calculating infinite ordinary continued fractions. The infinite continued fraction was converted into a recurrence relation of a sequence. If the sequence is convergent, the value of the infinite continued fraction is the limit of the sequence. For the first method, the limit was obtained by solving a corresponding equation. In the second approach, the Fibonacci sequence was used to write down the explicit expression for a general term of the sequence. Then the value of the infinite continued fraction was obtained by directly taking the limit in the expression. Besides that, the iteration process of evaluating infinite continued fractions can be intuitively shown by drawing diagrams. Moreover, based on the first approach, an iterative algorithm was developed, which can naturally lead to the Picard iteration method in solving ordinary differential equations.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7