检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周景润 傅景礼[2] ZHOU Jingrun;FU Jingli(Science Teaching and Research Section,Shaoxing Vocational & Technical College,Shaoxing 312000,Zhejiang,China;Institute of Mathematical Physics,Zhejiang SCI-tech University,Hangzhou 310018,Zhejiang,China)
机构地区:[1]绍兴职业技术学院理科教研室,浙江绍兴312000 [2]浙江理工大学数学与物理研究所,浙江杭州30018
出 处:《力学季刊》2018年第3期554-561,共8页Chinese Quarterly of Mechanics
基 金:国家自然科学基金(11472247;12722287)
摘 要:本文提出了约束Hamilton系统守恒量构成的一般途径.首先,给出了约束Hamilton系统的固有约束,并且建立了约束Hamilton系统正则方程;其次,给出了约束Hamilton系统的积分因子和守恒量定理;然后构建了约束Hamilton系统的广义Killing方程;最后举例说明其应用.显然,这种方法与之前的方法相比较,具有步骤清晰明了、限制条件少、运算简单的优点.In this paper a general approach to constructing the conservation laws for constrained Hamilton system is presented. Firstly the internal constraint of the constrained Hamilton system is given and the canonical equation of the system is established. Secondly, the definition of integrating factors and the conservation theorem of constrained Hamilton system are given. Then the general Killing equation of the constrained Hamilton system is established. Finally, an example is given to illustrate the application of the integrating factor method. Obviously, compared with previous methods, this method has the advantages of clear calculation steps, less restrictive conditions and simple calculation.
关 键 词:约束HAMILTON系统 积分因子 守恒定理 HAMILTON正则方程
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.206.12