基于学生自主探究的数学教学:题材选择与活动设计——以“二次根式加减法”为例  被引量:1

Theme Selection and Activities Design in Mathematics Teaching Based on Students' Self-inquiry: Take “Quadratic Radical Addition and Subtraction” as an Example

在线阅读下载全文

作  者:顿继安[1] 高媛[2] 陈青艳 DUN Ji-an;GAO Yuan;CHEN Qing-yan(Faculty of Mathematics and Science,Beijing Institute of Education,Beijing 100120,China;The Branch of Beijing No.13 Middle school,Beijing 100009,China;Tianjin Jizhou Bieshan Middle school,Tianjin 301907,China)

机构地区:[1]北京教育学院数学与科学学院,北京100120 [2]北京市第十三中学分校,北京100009 [3]天津市蓟州区别山镇初级中学,天津301907

出  处:《北京教育学院学报》2018年第5期20-24,共5页Journal of Beijing Institute of Education

基  金:北京市教委社科规划项目"指向学生核心素养培养的理科教师树型培训课程体系研究"(SM201650061002)

摘  要:自主探究是学生获得知识的一种方式,而教师是否选择这一方式教学,取决于教师对驱动该知识产生的问题的解决思路与方法是否在学生的最近发展区的判断。以二次根式加减法教学为例,教师在基于学生自主探究的教学活动设计中,需要在提出问题、解决问题、反思与评价等主要环节尽可能提高学生的自主探究程度;需要结合具体问题分析并了解学生的自主探究能力,尊重学生的认知过程,并善于选择突破学生学习难点的方式。Self-inquiry is a way tor students to acquire knowledge. Whether teachers will choose this method or not depends on the teachers' judgment about whether the solution ideas and methods of that driven problem generated by the knowledge are in the student' s ZPD. This paper, taking the quadratic radical addition and subtraction as an example, explains that teachers, based on the design of teaching activities of students' self-inquiry, need to try their best to raise the level of students' self-inquiry in the main steps of presenting questions, solving problems, and reflecting and evaluating. They also need to analyze and understand students' self-inquiry ability, respect students' cognitive process, and try to choose appropriate ways to help students' break through their learning difficulties.

关 键 词:数学教学 自主探究 驱动性问题 最近发展区 二次根式 运算法则 

分 类 号:C622.4[社会学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象