检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马雷[1] 陈珂 王明露 曲瑞 Ma Lei;Chen Ke;Wang Minglu;Qu Rui(College of Vehicle and Energy,Yanshan University,Qinhuangdao 06600)
出 处:《汽车工程》2018年第11期1330-1338,共9页Automotive Engineering
基 金:国家自然科学基金(51275442)资助
摘 要:本文中提出了一种介于车辆操纵稳定性和智能交通系统的驾驶员行为识别方法。首先通过微观仿真软件实现不同行驶状态下局部路网仿真,获取大量基本仿真数据,根据汽车动力学理论,实现基本行驶参数到行驶状态参数的转化;然后应用邻域粗糙集来进行特征约简,再使用总体平均经验模态分解(EEMD)、相关系数法和样本熵相结合的方法进行样本数据挖掘,将得到的样本熵数值作为聚类的特征向量;最后将特征向量输入GG模糊聚类进行聚类,利用微观交通软件和UC-Win/Road驾驶模拟器仿真得到的样本,采用最小平均贴近度择近原则实现驾驶行为识别验证,并根据最大贴近度和次最大贴近度计算待测样本属于某类驾驶行为的隶属度。实验表明,该方法取得了良好的识别效果。A driver behavior identification method in comprehensive consideration of vehicle handling stability and intelligent transportation system is proposed in this paper. Firstly, the local road network simulation under different driving conditions is achieved by Microscopic traffic simulation software, and massive basic simulation data is obtained. The transformation from basic driving parameters to running status parameters is realized based on the theory of vehicle dynamics. Secondly, neighborhood rough set is applied for thature reduction. Sample data mining is realized by combined use of ensemble empirical mode deeomposition (EEMD) , correlation coefficient and sample entropy. And the obtained sample entropy value is used as the eigenveetors. Finally, the eigenveetors are put into GG fuzzy clustering for clustering. Then on the basis of the samples, which are obtained by Microscopic traffic software and UC-Win/Road driving simulator, different driver behavior identification is achieved by minimum average closeness degree. Based on the maximum closeness degree and the seeondary maximum closeness degree, the driving behavior membership degree of the test sample is calculated. The experiment demonstrates that the method has achieved good effect in driver behavior identification.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222