检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李林会[1] 李琳[1] Li Linhui;Li Lin(Yunnan Vocational College of Mechanical and Electrical Technology, Kunming 650203, China)
出 处:《焊接》2017年第10期56-58,72,共4页Welding & Joining
摘 要:为提高移动焊接机器人的焊缝跟踪精度,结合RBF神经网络和PID控制设计了一种焊缝跟踪控制系统。介绍了焊接机器人系统组成并建立了相应的运动学模型,重点论述了RBF神经网络结构以及控制器的设计方法。通过神经网络在线辨识梯度信息,根据梯度信息在线调整比例、积分、微分系数,以提高系统控制性能。仿真结果表明:采用所述控制方法,能较好地实现复杂轨迹跟踪。在焊缝跟踪过程中,移动焊接机器人运行平稳,具有较高跟踪精度。In order to improve the seam tracking precision of the mobile welding robot,a control system was designed based on the RBF neural network and PID control in this paper.Its structure was introduced and the corresponding dynamics model was also established.The RBF neural network structure and the design method of controller were emphatically discussed.In order to improve the control performance,the gradient information was on-line identified by neural network as well as the proportion,integral and differential coefficients can be adjusted according to the gradient information.The simulation results show that the control method can realize complex trajectory tracking.In the seam tracking process,mobile welding robots run smoothly with high tracking precision.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28