机构地区:[1]Department of Veterinary Medicine and Surgery,College of Veterinary Medicine,University of Missouri [2]Harry S.Truman Memorial Veterans’ Hospital [3]Department of Microbiology,Roy J.and Lucille A.Carver College of Medicine,University of Iowa [4]Mason Eye Institute,School of Medicine,University of Missouri [5]Ophthalmology and Molecular Medicine,One-health One-Medicine Ophthalmology and Vision Research,University of Missouri
出 处:《World Journal of Translational Medicine》2016年第1期1-13,共13页世界转化医学杂志
基 金:Veteran Health Affairs Merit grant,No.1I01BX000357-05 (to Mohan RR);National Eye Institute,NIH grant,R01EY017294 (to Mohan RR);the Ruth M.Kraeuchi Missouri Endowment of Ophthalmology (to Mohan RR)
摘 要:Gene editing has recently emerged as a promising technology to engineer genetic modifications precisely in the genome to achieve long-term relief from corneal disorders.Recent advances in the molecular biology leading to the development of clustered regularly interspaced short palindromic repeats(CRISPRs) and CRISPR-associated systems,zinc finger nucleases and transcription activator like effector nucleases have ushered in a new era for high throughput in vitro and in vivo genome engineering.Genome editing can be successfully used to decipher complex molecular mechanisms underlying disease pathophysiology,develop innovative next generation gene therapy,stem cell-based regenerative therapy,and personalized medicine for corneal and other ocular diseases.In this review we describe latest developments in the field of genome editing,current challenges,and future prospects for the development of personalized genebased medicine for corneal diseases.The gene editing approach is expected to revolutionize current diagnostic and treatment practices for curing blindness.Gene editing has recently emerged as a promising technology to engineer genetic modifications precisely in the genome to achieve long-term relief from corneal disorders.Recent advances in the molecular biology leading to the development of clustered regularly interspaced short palindromic repeats(CRISPRs) and CRISPR-associated systems,zinc finger nucleases and transcription activator like effector nucleases have ushered in a new era for high throughput in vitro and in vivo genome engineering.Genome editing can be successfully used to decipher complex molecular mechanisms underlying disease pathophysiology,develop innovative next generation gene therapy,stem cell-based regenerative therapy,and personalized medicine for corneal and other ocular diseases.In this review we describe latest developments in the field of genome editing,current challenges,and future prospects for the development of personalized genebased medicine for corneal diseases.The gene editing approach is expected to revolutionize current diagnostic and treatment practices for curing blindness.
关 键 词:ADENO-ASSOCIATED virus Clustered Regularly-Interspaced SHORT Palindromic Repeats associated protein 9 Cornea Clustered regularly interspaced SHORT palindromic repeat Double strand breaks GENE EDITING sgRNA GENE targeting Homology directed repair Homologous recombination Indels LENTIVIRAL vector Protospacer-adjacent motif Transcription activator like effector NUCLEASES Zinc finger NUCLEASES
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...