出 处:《World Journal of Neurology》2014年第4期23-35,共13页世界神经病学杂志
基 金:Supported by In part by CIHR MOP#102467(Mc Laurin J);Cryptic Rite Charitable Foundation(Mc Laurin J)
摘 要:Neurodegenerative pathology can be seeded by introduction of misfolded proteins and peptides into the nervous system. Models of Alzheimer's disease(AD) and Parkinson's disease(PD) have both demonstrated susceptibility to this seeding mechanism, emphasizing the role of misfolded conformations of disease-specific proteins and peptides in disease progression. Thinking of the amyloidogenic amyloid-beta peptide(Aβ) and alpha-synuclein(α-syn), of AD and PD, respectively, as prionoids requires a comparison of these molecules and the mechanisms underlying the progression of disease. Aβ and α-syn, despite their size differences, are both natively unstructured and misfold into β-structured conformers. Additionally, several studies implicate the significant role of membrane interactions, such as those with lipid rafts in the plasma membrane, in mediating protein aggregation and transfer of Aβ and α-syn between cells that may be common to both AD and PD. Examination of inter-neuronal transfer of proteins/peptides provides evidence into the core mechanism of neuropathological propagation. Specifically, uptake of aggregates likely occurs by the endocytic pathway, possibly in response to their formation of membrane pores via a mechanism shared with pore-forming toxins. Failure of cellular clearance machinery to degrade misfolded proteins favours their release into the extracellular space, where they can be taken up by directly connected, nearby neurons. Although similarities between AD and PD are frequent and include mechanistically similar transfer processes, what differentiates these diseases, in terms of temporal and spatial patterns of propagation, may be in part due to the differing kinetics of protein misfolding. Several examples of animal models demonstrating seeding and propagation by exogenous treatment with Aβ and α-syn highlight the importance of both the environment in which these seeds are formed as well as the environment into which the seeds are propagated. Although these studies suggest potent seeding eNeurodegenerative pathology can be seeded by introduction of misfolded proteins and peptides into the nervous system. Models of Alzheimer's disease(AD) and Parkinson's disease(PD) have both demonstrated susceptibility to this seeding mechanism, emphasizing the role of misfolded conformations of disease-specific proteins and peptides in disease progression. Thinking of the amyloidogenic amyloid-beta peptide(Aβ) and alpha-synuclein(α-syn), of AD and PD, respectively, as prionoids requires a comparison of these molecules and the mechanisms underlying the progression of disease. Aβ and α-syn, despite their size differences, are both natively unstructured and misfold into β-structured conformers. Additionally, several studies implicate the significant role of membrane interactions, such as those with lipid rafts in the plasma membrane, in mediating protein aggregation and transfer of Aβ and α-syn between cells that may be common to both AD and PD. Examination of inter-neuronal transfer of proteins/peptides provides evidence into the core mechanism of neuropathological propagation. Specifically, uptake of aggregates likely occurs by the endocytic pathway, possibly in response to their formation of membrane pores via a mechanism shared with pore-forming toxins. Failure of cellular clearance machinery to degrade misfolded proteins favours their release into the extracellular space, where they can be taken up by directly connected, nearby neurons. Although similarities between AD and PD are frequent and include mechanistically similar transfer processes, what differentiates these diseases, in terms of temporal and spatial patterns of propagation, may be in part due to the differing kinetics of protein misfolding. Several examples of animal models demonstrating seeding and propagation by exogenous treatment with Aβ and α-syn highlight the importance of both the environment in which these seeds are formed as well as the environment into which the seeds are propagated. Although these studies suggest potent seeding e
关 键 词:Alzheimer’s DISEASE Parkinson’s DISEASE Prionoid SEEDING Propagation PROTEIN MISFOLDING
分 类 号:R743.3[医药卫生—神经病学与精神病学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...