检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马伟丽 王健[1] 孙文潇 MA Weili;WANG Jian;SUN Wenxiao(College of Geomatics,Shandong University of Science and Technology,Qingdao,Shandong 266590,China;Shandong Survey and Design Institute of Water Conservancy,Jinan 250101,China)
机构地区:[1]山东科技大学,山东青岛266590 [2]山东省水利勘测设计院,济南250101
出 处:《遥感信息》2019年第4期62-67,共6页Remote Sensing Information
基 金:国家自然科学基金(41471330)
摘 要:针对对于多视角下测得的散乱点云数据,ICP算法存在不稳定性和易收敛到局部最优的问题,提出基于曲率特征的ICP改进算法。该方法首先引入随机抽样一致性算法查找特征点,以距离最近为判断依据获得特征点对,然后利用四元数法计算配准参数,最后基于模拟退火法得到全局最优配准参数完成点云精确配准。实验表明,与传统ICP算法相比,改进的ICP算法可以有效提高点云配准的稳定性和精度。In order to solve the problem of instability and easy convergence to local optimum in the ICP algorithm with scattered point cloud data measured from multiple angles,an improved ICP algorithm based on curvature characteristics is proposed in this paper.The method first introduces random sampling consensus algorithm to find feature points,and obtains feature points from the nearest judgment basis,then uses four element method to calculate the registration parameters.Finally,the accurate registration of the global optimal registration parameters is obtained based on the simulated annealing algorithm.Experimental results show that the improved ICP algorithm can effectively improve the stability and accuracy of point cloud registration compared with the traditional ICP algorithm.
关 键 词:点云配准 ICP算法 曲率极值算法 随机抽样一致性算法 模拟退火法
分 类 号:P208[天文地球—地图制图学与地理信息工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.206.240