基于注意力机制与评论文本深度模型的推荐方法  被引量:17

Recommendation Method Based on Attention Mechanism and Review Text Deep Model

在线阅读下载全文

作  者:黄文明 卫万成[1] 张健 邓珍荣 HUANG Wenming;WEI Wancheng;ZHANG Jian;DENG Zhenrong(School of Computer Science and Information Security,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China;Guangxi Key Laboratory of Trusted Software,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China)

机构地区:[1]桂林电子科技大学计算机与信息安全学院,广西桂林541004 [2]桂林电子科技大学广西可信软件重点实验室,广西桂林541004

出  处:《计算机工程》2019年第9期176-182,共7页Computer Engineering

基  金:广西自然科学基金(2018GXNSFAA138132);广西高校云计算与复杂系统重点实验室项目(yf17106);桂林电子科技大学研究生教育创新计划(2018YJCX55)

摘  要:传统推荐系统依赖人工进行规则设计和特征提取,对评论文本内容的特征和隐信息的提取能力有限。针对该问题,融合注意力机制并基于深度学习对推荐系统进行改进,提出一种对评论文本深度建模的推荐方法。使用词嵌入模型表达数据集评论中的语义,引入注意力机制对输入内容进行重新赋权,通过并行的卷积神经网络挖掘用户和项目评论数据中的隐含特征,将两组特征耦合输入并采用因子分解机进行评分预测,得到推荐结果。实验结果表明,该方法可有效提高推荐准确率,均方误差较DeepCoNN方法提升2 %以上。The traditional recommendation system relies on manual rule design and feature extraction,resulting in insufficient extraction of the features and implicit information of the review text content.Aiming at this problem,a recommendation method for deep modeling of review text is proposed combining the attention mechanism and the improved recommendation system based on deep learning.The word embedding model is used to express the semantics in dataset comments,the attention mechanism is introduced to re-weight the input content,and the hidden features in the user and project comment data are mined through the parallel convolutional neural network.The two sets of features are coupled and input and scored by a factorization machine to obtain the recommendation results.Experimental results show that the proposed algorithm can efficiently improve the recommendation precision,and the mean square error is improved by more than 2 % than that of the DeepCoNN algorithm.

关 键 词:推荐系统 特征提取 注意力机制 卷积神经网络 因子分解机 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象