检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈丁[1] 万刚[1] 李科[1] CHEN Ding;WAN Gang;LI Ke(Information Engineering University,Zhengzhou 450001,China)
机构地区:[1]信息工程大学
出 处:《测绘学报》2019年第10期1275-1284,共10页Acta Geodaetica et Cartographica Sinica
基 金:国家自然科学基金(41871322);国家国防基金项目(3601015)~~
摘 要:目标检测是遥感影像分析的基础和关键。针对光学遥感影像中目标尺度多样、小目标居多、相似性及背景复杂等问题,本文提出一种将卷积神经网络(CNN)和混合波尔兹曼机(HRBM)相结合的遥感影像目标检测方法。首先设计细节—语义特征融合网络(D-SFN)提取卷积神经网络低层和高层融合特征,提升目标特征的判别力,特别是小目标;其次考虑上下文信息对目标检测的影响,结合上下文信息进一步加强目标表征的准确性,提升检测精度。在NWPU数据集上试验表明,本文方法能够显著提升目标检测精度且具有一定程度的稳健性。Object detection is the basic and key step of remote sensing image analysis. In optical remote sensing images, object detection faced many challenges such as multi-scale and small objects, appearance ambiguity and complicated background. To address these problems, a new method of object detection based on convolutional neural networks (CNN) and hybrid restricted boltzmann machine (HRBM) is proposed. Firstly, the detail-semantic feature fusion network (D-SFN) is designed to extract fusion features from low-level and high-level CNNs, which can make the target representation more distinguishable, especially for small objects. Secondly, context information is incorporated to further boost feature discrimination, which also improves the detection accuracy. Experiments on NWPU datasets show that the proposed method can significantly improve the accuracy of object detection and has certain robustness.
关 键 词:遥感影像 目标检测 卷积神经网络 受限玻尔兹曼机
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166