机构地区:[1]Xin’an Key Laboratory of Medicine, Ministry of Education, Anhui University of Chinese Medicine
出 处:《Neural Regeneration Research》2020年第3期528-536,共9页中国神经再生研究(英文版)
摘 要:Ferroptosis is a type of programmed cell death dependent on iron.It is different from other forms of cell death such as apoptosis,classic necrosis and autophagy.Ferroptosis is involved in many neurodegenerative diseases.The role of ferroptosis in glutamate-induced neuronal toxicity is not fully understood.To test its toxicity,glutamate(1.25–20 mM)was applied to HT-22 cells for 12 to 48 hours.The optimal experimental conditions occurred at 12 hours after incubation with 5 mM glutamate.Cells were cultured with 3–12μM ferrostatin-1,an inhibitor of ferroptosis,for 12 hours before exposure to glutamate.The cell viability was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Autophagy was determined by monodansylcadaverine staining and apoptosis by caspase 3 activity.Damage to cell structures was observed under light and by transmission electron microscopy.The release of lactate dehydrogenase was detected by the commercial kit.Reactive oxygen species were measured by flow cytometry.Glutathione peroxidase activity,superoxide dismutase activity and malondialdehyde level were detected by the appropriate commercial kit.Prostaglandin peroxidase synthase 2 and glutathione peroxidase 4 gene expression was detected by real-time quantitative polymerase chain reaction.Glutathione peroxidase 4 and nuclear factor erythroid-derived-like 2 protein expression was detected by western blot analysis.Results showed that ferrostatin-1 can significantly counter the effects of glutamate on HT-22 cells,improving the survival rate,reducing the release of lactate dehydrogenase and reducing the damage to mitochondrial ultrastructure.However,it did not affect the caspase-3 expression and monodansylcadaverine-positive staining in glutamate-injured HT-22 cells.Ferrostatin-1 reduced the levels of reactive oxygen species and malondialdehyde and enhanced superoxide dismutase activity.It decreased gene expression of prostaglandin peroxidase synthase 2 and increased gene expression of glutathione peroxidase 4 and proteFerroptosis is a type of programmed cell death dependent on iron. It is different from other forms of cell death such as apoptosis, classic necrosis and autophagy. Ferroptosis is involved in many neurodegenerative diseases. The role of ferroptosis in glutamate-induced neuronal toxicity is not fully understood. To test its toxicity, glutamate(1.25–20 mM) was applied to HT-22 cells for 12 to 48 hours. The optimal experimental conditions occurred at 12 hours after incubation with 5 mM glutamate. Cells were cultured with 3–12 μM ferrostatin-1, an inhibitor of ferroptosis, for 12 hours before exposure to glutamate. The cell viability was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Autophagy was determined by monodansylcadaverine staining and apoptosis by caspase 3 activity. Damage to cell structures was observed under light and by transmission electron microscopy. The release of lactate dehydrogenase was detected by the commercial kit. Reactive oxygen species were measured by flow cytometry. Glutathione peroxidase activity, superoxide dismutase activity and malondialdehyde level were detected by the appropriate commercial kit. Prostaglandin peroxidase synthase 2 and glutathione peroxidase 4 gene expression was detected by real-time quantitative polymerase chain reaction. Glutathione peroxidase 4 and nuclear factor erythroid-derived-like 2 protein expression was detected by western blot analysis. Results showed that ferrostatin-1 can significantly counter the effects of glutamate on HT-22 cells, improving the survival rate, reducing the release of lactate dehydrogenase and reducing the damage to mitochondrial ultrastructure. However, it did not affect the caspase-3 expression and monodansylcadaverine-positive staining in glutamate-injured HT-22 cells. Ferrostatin-1 reduced the levels of reactive oxygen species and malondialdehyde and enhanced superoxide dismutase activity. It decreased gene expression of prostaglandin peroxidase synthase 2 and increased gene expression of glutat
关 键 词:ferroptosis ferrostatin-1 GLUTAMATE glutathione PEROXIDASE 4 HT-22 cell OXIDATIVE TOXICITY PROSTAGLANDIN PEROXIDASE SYNTHASE 2 reactive oxygen species
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...