检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭鹏 GUO Peng(School of Business,Shanghai Dianji University,Shanghai 201306,China)
机构地区:[1]上海电机学院商学院
出 处:《上海电机学院学报》2019年第6期367-372,共6页Journal of Shanghai Dianji University
基 金:上海电机学院应用数学项目(No.16JCXK02)
摘 要:Riccati方程是一类形式上非常简单的微分方程。采用算子分裂法,假设方程的解为级数形式u=i=1∑∞ui,对于Riccati方程中较难处理的非线性项N(u),通过Adomian多项式给出表示N(u)=n=0∑∞Am。通过计算Adomian多项式A_n建立Riccati方程的解析近似解的表达式,并给出了具体的数值计算结果。结果表明:算子分裂法对于计算Riccati方程是非常有效的。The Riccati equation is a kind of differential equation which is very simple in form. However, in general, it is difficult to present the analytic solution. In this work, the operator decomposition method is used to solve the Riccati equation. The present paper supposes that the solution to the Riccati equation is in the form of u=i=1∑∞ui. The nonlinear part N(u), which is difficult to solve, can be expressed in terms of the Adomian polynomials N(u)=n=0∑∞Am. By calculating the Adomian polynomials, the approximate solution can be obtained. Finally, the numerical example shows that the present method is highly effective for finding the approximate solution to the Riccati equation.
关 键 词:RICCATI方程 解析近似解 ADOMIAN多项式 非线性
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49