检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张文敏[1,2] 方太松 王翔 耿方琳 刘箐 董庆利[1] ZHANG Wenmin;FANG Taisong;WANG Xiang;GENG Fanglin;LIU Qing;DONG Qingli(School of Medical Instrument and Food Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;School of Public Health,Shaanxi University of Chinese Medicine,Xianyang 712000,China)
机构地区:[1]上海理工大学医疗器械与食品学院,上海200093 [2]陕西中医药大学公共卫生学院,陕西咸阳712000
出 处:《食品科学》2020年第1期277-283,共7页Food Science
基 金:“十三五”国家重点研发计划重点专项(2018YFC1602902);国家自然科学基金青年科学基金项目(31801455)
摘 要:数学模型是食品预测微生物学研究的核心,基于数学模型得到的腐败菌生长情况可用于预测食品的货架期,得到的食源性致病菌生长数据是微生物暴露评估不可缺少的部分。近年来,预测微生物学发展的主要方向之一是研究微生物在实际食品环境中的生长动态。本文首先简要介绍了传统的预测微生物数学模型;然后阐述了实际食品中微生物与环境之间的交互作用现象,在此基础之上,介绍了描述性模型和机械性模型两类微生物间交互模型,并分析了两类模型的推导过程,最后对食品中微生物间交互模型的应用前景进行了展望,为预测微生物学这一学科的进步提供了理论基础。Mathematical models are at the core of research in predictive food microbiology(PFM). The growth of spoilage microorganisms predicted by mathematical models can be used to predict the shelf life of foods. Growth data of pathogens predicted by mathematical models are indispensible in microbial exposure assessment. In recent years, the growth dynamics of bacteria in actual food environments has been one of the major advances in PFM. First, this article presents a brief description of the traditional mathematical models used in PFM. Next, it interprets the interaction between microbes and the environment in actual food samples. Furthermore, two microbial interaction models, known as descriptive and mechanistic models, are described along with analysis of how they are deduced. Finally, future prospects for the application of these models in PFM are discussed. This review could provide useful data for the development of PFM.
分 类 号:TS201.3[轻工技术与工程—食品科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145