检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕旭 胡柏青[1] 戴永彬[2] 赵仁杰 LYU Xu;HU Baiqing;DAI Yongbin;ZHAO Renjie(College of Electrical Engineering,Naval University of Engineering,Wuhan 430033,China;School of Electrical Engineering,Liaoning University of Technology,Jinzhou 121001,China)
机构地区:[1]海军工程大学电气工程学院,湖北武汉430033 [2]辽宁工业大学电气工程学院,辽宁锦州121001
出 处:《系统工程与电子技术》2020年第6期1366-1371,共6页Systems Engineering and Electronics
基 金:国家自然科学基金(61703419)资助课题。
摘 要:针对组合导航姿态估计中无味四元数估计(unscented quaternion estimation,USQUE)的噪声协方差矩阵参数无法准确给出等问题,提出基于粒子群优化的USQUE(USQUE based on particle swarm optimization,PSO-USQUE)算法。通过粒子群算法对噪声协方差矩阵Q和R进行寻优,获取优化的噪声协方差矩阵等滤波先验条件;分别进行仿真实验和微机电惯导系统/GPS车载实验。实验结果表明,对于USQUE的姿态估计问题,PSO-USQUE算法相比常规算法具有更高的精度,验证了所提算法的有效性。Aiming at the problem that the noise covariance matrix parameters of the unscented quaternion estimation(USQUE)in integrated navigation attitude estimation cannot be given accurately,an USQUE based on particle swarm optimization(PSO-USQUE)algorithm is proposed.PSO is used to optimize the noise covariance matrices Qand R,and the filtering prior conditions such as the optimized noise covariance matrix are obtained.In order to verify the effectiveness of the algorithm proposed,simulation tests and micro-electromechonical system(MEMS)inertial navigation system/GPS vehicle tests are performed separately.The experimental results show that the PSO-USQUE algorithm has higher accuracy than the conventional algorithm for the attitude estimation problem of USQUE.
关 键 词:粒子群优化 四元数 卡尔曼滤波 组合导航 姿态估计
分 类 号:U666.11[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222