检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:单巍[1] 王江涛[1] 陈得宝[1] 李素文[1] SHAN Wei;WANG Jiang-tao;CHEN De-bao;LI Su-wen(School of Physics and Electronic Information,Huaibei Normal University,Huaibei 235000,China)
机构地区:[1]淮北师范大学物理与电子信息学院,安徽淮北235000
出 处:《激光与红外》2020年第5期634-640,共7页Laser & Infrared
基 金:国家自然科学基金项目(No.61572224);安徽省自然科学研究项目(No.KJ2018B10)资助。
摘 要:红外图像中的行人检测一直是计算机视觉领域的研究热点与难点。针对传统的红外行人检测方法需要人工设计目标表达特征的弊端,本文从深度学习的角度出发,提出一种可以自动构建目标表达特征的红外行人检测卷积神经网络。在对卷积神经网络的实现原理进行分析的基础上,设计了红外行人检测卷积神经网络的初始结构,然后通过实验对初始结构进行调整,得到最终的检测神经网络。对实拍红外人体数据库进行行人检测的实验结果表明,该方法在保持低虚警率的同时可以对红外图像中的行人进行稳健检测,优于传统方法。Pedestrian detection in infrared images has been a hot and difficult research topic in computer version.Traditional methods of pedestrian detection mainly depend on the manual feature for the expression of human body and the results largely relies on the feature representation.Designing artificial features is time-consuming and labor intensive,requires heuristic expertise and experience.Deep learning model based on convolution neural network can automatically learn feature representation from the original images,while avoiding the drawbacks of artificial features.Its difficulty is the choice of network parameters.In this paper,we propose to use deep learning method based on convolution neural network in the process of pedestrian detection.In addition,we analyze the impact of network layers,convolution kernel sizes and feature maps to pedestrian detection in infrared images are.The results demonstrate the superiority of our method over traditional methods in detection rate and alarm rate.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.189.184.208