检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙智伟[1] Sun Zhi-Wei(Department of Mathematics,Nanjing University,Nanjing 210093)
机构地区:[1]南京大学数学系,南京210093
出 处:《南京大学学报(数学半年刊)》2019年第2期134-155,共22页Journal of Nanjing University(Mathematical Biquarterly)
基 金:Supported by the National Natural Science Foundation(grant 11571162)of China.
摘 要:本文中研究加法组合中一些新问题。我们的问题主要涉及n个不同数(或加法Abel群的元)a1,...,an的使得诸ai+ai+1(或ai-ai+1)两两不同的置换或圆排列。对不等于25的奇素数幂次q=2n+1>13,我们证明有S={a^2:a∈Fq\{0}}中元的圆排列(a1,...,an)使得{a1+a2,...,an-1+an,an+a1}=S,这儿Fq指q元域。对无挠加法Abel群的n>3元有限子集A,我们证明有A的元素列举a1,...,an使得a1+2a2,a2+2a3,...,an-1+2an,an+2a1两两不同。我们还提出了30个未解决的猜想供进一步研究。In this paper we investigate some new problems in additive combinatorics.Our problems mainly involve permutations(or circular permutations) n distinct numbers(or elements of an additive abelian group) a1,…,an with adjacent sums ai+ai+1(or differences ai-ai+1) pairwise distinct.For an odd prime power q=2n+1> 13 with q≠25,we show that there is a circular permutation(a1,…,an) of the elements of S={a2:a∈Fq \ {0}} such that {a1+a2,…,an-1+an,an+a1}=S,where Fq denotes the field of order q.For any finite subset A of an additive torsion-free abelian group G with |A|=n> 3,we prove that there is a numbering a1,…,an of the elements of A such that a1+2 a2,a^2+2 a3,…,an-1+2an,an+2a1 are pairwise distinct.We also pose 30 open conjectures for further research.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.91