检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:廖凯 刘庆云 刘泽浩 Liao Kai;Liu Qingyun;Liu Zehao(Guangdong Institute of Intelligent Manufacturing,Guangzhou 510070,China;Guangzhou Lvyuan Information Technology Co.,Ltd.,Guangzhou 510610,China)
机构地区:[1]广东省智能制造研究所,广州510070 [2]广州绿源信息科技有限公司,广州510610
出 处:《机电工程技术》2020年第8期145-147,共3页Mechanical & Electrical Engineering Technology
摘 要:机械臂系统是多输入、多输出的非线性系统,其位姿输出精度不稳定,与给定信号存在一定的跟踪误差。为提高机械臂系统跟踪精度以及抗干扰性能,通过对比分析常用的RBF神经网络学习方法,结合机械臂系统的非线性因素及其控制的实时性要求,提出改进RAN学习方法;并根据RAN学习方法构建RBF神经网络,将其应用于机械臂系统的逆控制器设计中。仿真实验表明,改进后的RBF神经网络逆控制器具有良好的对给定信号的跟踪精度和抗干扰能力,适用于机械臂系统的实时控制。The manipulator system is a multi input and multi output nonlinear system.Its position and attitude output accuracy is not stable,and there is a certain tracking error with the given signal.In order to improve the tracking accuracy and anti-interference performance of the manipulator system,by comparing and analyzing the common RBF neural network learning methods,combined with the nonlinear factors of the manipulator system and the real-time requirements of the control,an improved ran learning method was proposed.According to the ran learning method,RBF neural network was constructed and applied to the inverse controller design of the manipulator system.The simulation results show that the improved RBF neural network inverse controller has good tracking accuracy and anti-interference ability to the given signal,and is suitable for the real-time control of the manipulator system.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.150.104