检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张艳 张明路[1] 蒋志宏[2] 吕晓玲[1] ZHANG Yan;ZHANG Minglu;JIANG Zhihong;LYU Xiaoling(School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China;Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China)
机构地区:[1]河北工业大学机械工程学院,天津300130 [2]北京理工大学机电学院智能机器人研究所,北京100081
出 处:《合肥工业大学学报(自然科学版)》2020年第10期1297-1306,共10页Journal of Hefei University of Technology:Natural Science
基 金:国家自然科学基金资助项目(61733001);河北省自然科学基金和重点基础研究专项资助项目(E2018202338)。
摘 要:移动机器人路径规划是机器人研究中最关键的技术之一,机器人进行最优的路径规划是其中的难点。文章以目前对移动机器人路径规划的研究现状为基础,通过具体分析与研究,将现有成果进行归纳总结、深入探讨;并依据基本原理与应用场景的不同,将算法划分为智能仿生、几何模型搜索、虚拟势场、强化学习4类;通过对每类算法的分析可得出各算法的优缺点以及主要适用场景,并通过多种不同算法相互结合的方式来解决移动机器人路径规划的问题。该文为动态环境下移动机器人路径规划的研究奠定了一定的理论基础。Path planning of mobile robots is one of the most critical technologies in robot research.Especially in complex and changeable dynamic environment,how to optimize the path planning of mobile robots has become a difficult problem.Based on the current research status of mobile robot path planning,this paper summarizes and discusses the existing achievements through specific analysis and research.According to the basic principles of the algorithms and the different application scenarios,they are divided into four categories:intelligent bionics,geometric model search,virtual potential field and reinforcement learning.Through the analysis of each kind of algorithm,the advantages and disadvantages of each kind of algorithm as well as the main applicable scenarios are obtained.The idea of combining different algorithms is used to solve the problem of mobile robot path planning,which lays a foundation for the research of mobile robot path planning in dynamic environment.
分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145