ATO系统速度控制的BP-FIPID算法  被引量:3

BP-FIPID Algorithm for Speed Control of ATO System

在线阅读下载全文

作  者:楚彭子 虞翊 林辉[2,3] 袁建军 姜西[4] CHU Pengzi;YU Yi;LIN Hui;YUAN Jianjun;JIANG Xi(The Key Laboratory of Road and Traffic Engineering,Ministry of Education,Tongji University,Shanghai 201804,China;Maglev Transportation Engineering R&D Centre,Tongji University,Shanghai 201804,China;Shanghai Maglev and Rail Transit Collaborative Innovation Centre,Tongji University,Shanghai 201804,China;China Railway Siyuan Survey and Design Group Co.,Ltd.,Wuhan 430063,China)

机构地区:[1]同济大学道路与交通工程教育部重点实验室,上海201804 [2]同济大学磁浮交通工程技术研究中心,上海201804 [3]同济大学上海市磁浮与轨道交通协同创新中心,上海201804 [4]中铁第四勘察设计院集团有限公司,武汉430063

出  处:《计算机工程与应用》2020年第22期224-229,共6页Computer Engineering and Applications

基  金:国家重点研发计划资助项目(No.2016YFB1200602-02);上海市科学技术委员会科研计划资助项目(No.18DZ1205803);上海市磁浮与轨道交通协同创新中心基金资助项目(No.20132223)。

摘  要:针对列车自动运行(Automatic Train Operation,ATO)系统控制算法的稳定性与智能性需求,以及比例积分微分(Proportion Integration Differentiation,PID)控制算法的拓展优化,结合BP(Back Propagation)神经网络算法和模糊免疫PID(Fuzzy Immune PID,FIPID)控制算法,提出一种基于BP神经网络的免疫控制参数自适应调整的模糊免疫PID控制算法(BP-FIPID)。以列车运行控制模型为控制对象,分别采用阶跃信号和列车运行目标速度曲线对传统FIPID以及BP-FIPID进行仿真检验。测试结果显示,与FIPID算法相比,BP-FIPID算法具有更好的阶跃响应和抗干扰性能,针对复杂工况的速度-时间曲线同样体现出理想的追溯性。免疫控制参数的自适应调整有助于改进FIPID的性能,两种算法均可作为实践参考。Aiming at the stability and intelligence requirements of the control algorithm in Automatic Train Operation(ATO)systems,and the expansion and optimization of PID control algorithm,a BP(Back Propagatio)neural networkbased Fuzzy Immune PID(BP-FIPID)control algorithm for the adaptive adjustment of immune parameters is proposed based on the BP neural network algorithm and Fuzzy Immune PID(FIPID)control algorithm.Taking a train operation control model as the control object,FIPID and BP-FIPID are tested using a step signal and a target speed curve of train operation.The results show that compared with FIPID,BP-FIPID algorithm has a good performance of step response and antiinterference,and the traceability for the target speed curve with complex conditions is also ideal.The adaptive adjustment of immune control parameters can help to improve the performance of FIPID,and the two algorithms can be used as practical references.

关 键 词:列车运行控制 ATO系统 BP-FIPID 模糊免疫PID(FIPID) BP神经网络 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构] U268.4[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象