基于迭代扩展卡尔曼滤波的车辆运动状态估计  被引量:7

Vehicle Motion State Estimation Based on Iterative Extended Kalman Filter

在线阅读下载全文

作  者:赵强[1] 范思远 唐政林 ZHAO Qiang;FAN Siyuan;TANG Zhenglin(School of Traffic and Transportation,Northeast Forestry University,Harbin 150040,China)

机构地区:[1]东北林业大学交通学院,哈尔滨150040

出  处:《森林工程》2021年第1期66-72,79,共8页Forest Engineering

基  金:黑龙江省留学归国人员科学基金(LC2015019)。

摘  要:采用低成本传感器并借助卡尔曼滤波方法实现车辆运动状态的高精度估计。首先考虑车辆侧向运动、横摆运动以及侧倾运动,建立非线性三自由度的动力学车辆模型,通过对其线性化,实现扩展卡尔曼滤波设计,进一步针对线性化带来的截断误差问题,利用贝叶斯估计建立极大后验状态估计最小二乘表达式,通过进一步求解最终设计完成了迭代扩展卡尔曼滤波算法。通过不同行驶条件下仿真,验证迭代扩展卡尔曼滤波过滤噪声和追踪实际值的能力。仿真结果表明:在复杂的行驶条件下,迭代扩展卡尔曼滤波能大幅过滤噪声,并有效追踪车辆质心侧偏角和横摆角速度的实际状态。The paper discusses to use low-cost sensors and Kalman filter to achieve high-precision vehicle motion state estimation.Firstly,considering the lateral,yaw motion and roll motion of the vehicle,a nonlinear 3-DOF dynamic vehicle model is established and further linearized to realize extended Kalman filter design.To solve the problem of truncation error caused by linearization,the least square expression of largest posterior state estimation is established by Bayesian estimation,and the iterative extended Kalman filter(IEKF)algorithm is finally completed by further solving.Through simulations under different driving conditions,the IEKF algorithm is verified on filtering noise and tracking the actual value.The simulation results show that under complex driving conditions the IEKF algorithm can effectively filter noise and track the actual state of the vehicle slip angle and yaw rate.

关 键 词:车辆运动状态估计 迭代扩展卡尔曼滤波 三自由度 质心侧偏角 横摆角速度 

分 类 号:U463.6[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象