检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贺增甲 孔令华 符芳芳[2] HE Zengjia;KONG Linghua;FU Fangfang(School of Mathematics and Statistics,Jiangxi Normal University,Nanchang Jiangxi 330022,China;Department of Fundamental Education,Nanchang Institute of Science and Technology,Nanchang Jiangxi 330108,China)
机构地区:[1]江西师范大学数学与统计学院,江西南昌330022 [2]南昌工学院基础部,江西南昌330108
出 处:《江西师范大学学报(自然科学版)》2020年第6期599-603,共5页Journal of Jiangxi Normal University(Natural Science Edition)
基 金:国家自然科学基金(11961036);江西省教育厅基金(GJJ200310)资助项目.
摘 要:该文为带有旋转角动量的Gross-Pitaevskii方程构造了分裂高阶紧致差分格式.首先通过时间分裂将其分为线性方程和非线性方程,非线性方程可以通过质量守恒定律进行精确求解,线性方程通过高阶紧致格式和局部1维方法进行离散,最终得到的格式时间方向2阶收敛和空间方向4阶收敛,并保持质量守恒.最后用数值算例验证了格式的收敛阶以及质量守恒性.The splitting high-order compact difference scheme for the Gross-Pitaevskii equation with angular momentum rotation term is constructed.Firstly,the equation is divided into linear equations and nonlinear equations by time splitting method.Secondly,the nonlinear equations can be accurately solved by the conservation law of mass,and the linear equation is discretized by a high-order compact scheme and a local one-dimensional method.The resulting scheme converges second-order in time and fourth-order in space while maintaining mass conservation.Finally,numerical experiments verify the convergence orders and mass conservation of the scheme.
关 键 词:GROSS-PITAEVSKII方程 旋转效应 分裂方法 高阶紧致格式 质量守恒
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7