非仿射多智能体系统的自适应神经网络控制  被引量:2

Adaptive neural network control of non-affine multi-agent systems

在线阅读下载全文

作  者:张薇 余昭旭[1] ZHANG Wei;YU Zhao-xu(Department of Automation,School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China)

机构地区:[1]华东理工大学信息科学与工程学院自动化系,上海200237

出  处:《计算机工程与设计》2021年第2期402-410,共9页Computer Engineering and Design

基  金:国家自然科学基金项目(71871135);中央高校基本科研业务费探索研究专项基金项目(222201714055)。

摘  要:针对有向拓扑图下一类控制方向未知的非仿射非线性多智能体系统的输出一致性问题,综合运用中值定理、RBF神经网络及其特性、Nussbaum增益函数方法和动态面控制技巧,提出一种分布式自适应神经网络控制协议,保证跟随者的输出能与领导者的输出同步,跟踪误差能保持在零点的小邻域内。采用新的非线性滤波器代替传统动态面控制方法(CDSC)的一阶线性滤波器,改善控制性能。通过一致性分析及仿真例子验证了所提控制方法的有效性。To solve the problem of output consensus control of leader-following nonlinear multi-agent systems under the directed communication topology,a distributed adaptive neural control protocol was proposed.Major design difficulties for this class of systems come from the non-affine system and the unknown control direction embedded in the unknown control gain function.A combination of mean-value theorem,Nussbaum gain function method and radial basis function(RBF)neural network approximation was employed to overcome these difficulties.To improve the control performance of conventional dynamical surface control(CDSC),a nonlinear filter was presented.The proposed control protocol guarantees that the outputs of followers can track that of the leader and the tracking errors can remain in a small neighbourhood of the origin.A simulation example was given to validate the effectiveness of the control methodology.

关 键 词:非线性系统 多智能体系统 未知控制方向 神经网络 自适应控制 

分 类 号:TP273.2[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象