检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:包涛 董早鹏 张波[1] 韦喜忠[1] BAO Tao;DONG Zao-peng;ZHANG Bo;WEI Xi-zhong(China Ship Scientific Research Center,Wuxi 214082,China;Key Laboratory of High Performance Ship Technology(Wuhan University of Technology),Ministry of Education,Wuhan 430063,China;School of Transportation,Wuhan University of Technology,Wuhan 430063,China)
机构地区:[1]中国船舶科学研究中心,江苏无锡214082 [2]高性能船舶技术教育部重点实验室(武汉理工大学),武汉430063 [3]武汉理工大学交通学院,武汉430063
出 处:《船舶力学》2021年第5期598-606,共9页Journal of Ship Mechanics
摘 要:为使无人艇在复杂环境干扰下能按希望要求改变航向,本文设计了一种基于广义动态模糊神经网络和参考模型的鲁棒自适应控制器。首先针对因环境干扰产生的不确定干扰项基于广义动态模糊神经网络建立了无人艇运动控制的逆动态模型,设计了模糊神经网络的自适应率以进一步调整神经网络权值,并结合无人艇运动控制模型的参考模型设计了无人艇航向鲁棒自适应控制器,然后通过Lyapunov稳定性理论,证明了基于该控制器的无人艇航向控制系统的稳定性,最后采用半物理仿真实验验证了该控制方法的有效性和准确性。A robust adaptive controller based on generalized dynamic fuzzy neural network is proposed for heading control of a high-speed Unmanned Surface Vessel(USV)under the complex environment.Firstly,the generalized dynamic fuzzy neural network is used to establish the inverse dynamic model of the motion control of USV aimed at the uncertain disturbance generated by environmental interference.Then an adaptive rate of the fuzzy neural network is designed to further adjust the weights of the neural network.Combined with the reference model of the motion control model of the USV,the robust adaptive controller is construct⁃ed.And using the Lyapunov stability theory,the stability of the USV heading control system based on the con⁃troller is proved.Finally,the effectiveness and accuracy of the control method are verified by the semi-physi⁃cal simulation experiment.
关 键 词:高速无人艇 航向控制 广义动态模糊神经网络 鲁棒自适应控制 LYAPUNOV稳定性理论
分 类 号:U664.82[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.140.198.85