检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李超[1] 周博[2] LI Chao;ZHOU Bo(College of Mechanical Engineering,Jiangsu Univercity,Zhenjiang 212000,China;Department of Mechanical Engineering,Yancheng Institute of Technology,Yancheng 224051,China)
机构地区:[1]江苏大学机械工程学院,江苏镇江212000 [2]盐城工学院机械工程学院,江苏盐城224000
出 处:《食品工业科技》2021年第12期218-224,共7页Science and Technology of Food Industry
基 金:国家自然科学基金(31671583)。
摘 要:为对不同霉变程度的大米实现快速鉴别,研制了一套以LabVIEW为平台用于检测大米霉变的电子鼻系统。通过霉菌孢子液侵染正常大米,使用该电子鼻系统对不同天数掺入不同比例霉米的大米样品挥发物进行检测,对采集数据进行主成分分析(PCA)、线性判别分析(LDA),最后使用反向传播(back propagation,BP)神经网络建立预测模型。结果表明,得分图显示正常大米和霉变大米挥发物差异性显著,LDA分类效果优于PCA;所建立的模型预测值和实际值相关性达0.953以上,训练集和测试集平均相对误差分别为3.56%、4.18%,训练集和测试集对于正常大米样本识别率为100%。综上,电子鼻系统可以作为霉变大米无损检测的有效手段,在大米品质鉴别方面具有实际应用意义。In order to identify the moldy rice rapidly,an electronic nose system based on LabVIEW was developed.The volatiles of rice samples mixed with different proportions of moldy rice in different days were detected by the electronic nose system.Principal component analysis(PCA)and linear discriminant analysis(LDA)were performed on the collected data.Finally,back propagation(BP)neural network was used to establish the prediction model.The results showed that,there was significant difference in volatile matter between normal rice and moldy rice volatiles,and the LDA classification effect was better than PCA.The correlation between predicted value and actual value of the model was more than 0.953,the average relative error of training set and test set was 3.56%and 4.18%,and the recognition rate of training set and test set was 100%for normal rice samples.In conclusion,the electronic nose system could be used as an effective means of nondestructive detection of moldy rice,and had practical significance in rice quality identification.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170