一道四边形内切圆问题演变探究  

在线阅读下载全文

作  者:陈田可之 吴国庆(指导) 

机构地区:[1]武汉市光谷实验中学,湖北武汉430223 [2]不详

出  处:《中学生数学》2021年第10期34-35,共2页

摘  要:学习完切线长定理后,我遇到一个问题,问题如下:问题1四边形ABCD的内切圆为☉O,如图1所示,切点分别为E,F,G,H,求证:AB+CD=BC+AD.如何证明AB+CD=BC+AD呢?观察图形,我发现四边形ABCD的四条边被四个切点分成八条线段,由切线长基本图,它们恰好变成四对相等线段,即AH=AG,BH=BE,DF=DG,CF=CE,将上面四个式子相加可得AH+BH+DF+CF=AG+BE+DG+CE,即为AB+CD=BC+AD.

关 键 词:切线长定理 内切圆 ABCD 切点 四边形 DF BE :问题 

分 类 号:G63[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象