检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:詹皖江 洪植林 方路平[1] 吴哲夫[1] 吕跃华[2] ZHAN Wan-jiang;HONG Zhi-lin;FANG Lu-ping;WU Zhe-fu;LYU Yue-hua(College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China;Zhejiang Institute of Science and Technology Information,Hangzhou 310006,China)
机构地区:[1]浙江工业大学信息学院,杭州310023 [2]浙江省科技信息研究院,杭州310006
出 处:《计算机科学》2021年第7期172-177,共6页Computer Science
基 金:浙江省自然科学基金(LY18F010025)。
摘 要:推荐系统能够根据用户的兴趣特点和购买行为,向用户推荐感兴趣的信息和商品。随着用户生成内容UGC逐渐成为当前Web应用的主流,基于UGC的推荐也得到了广泛关注。区别于传统推荐中用户与物品的二元交互,有的UGC推荐采用协同过滤方法,提出了消费者、物品和生产者的三元交互,进而提高了推荐准确度,但大多算法都集中在推荐的性能而忽略了对鲁棒性的研究。因此,通过结合对抗性学习和协同过滤的思想,提出了一种基于对抗性学习的协同过滤推荐算法。首先在三元关系模型参数上加入对抗性扰动,使模型的性能降至最差,与此同时使用对抗性学习的方法训练模型,以达到提高推荐模型鲁棒性的目的;其次设计了一种高效的算法用于求解模型所需的参数;最后在Reddit和Pinterest两个公共数据集上进行测试。实验结果表明:1)在相同参数设置下,与现有算法相比,所提方法的AUC,Precision和Recall指标均有明显的提高,验证了其可行性与有效性;2)该算法不仅增强了推荐性能,还提高了模型的鲁棒性。The recommendation system can recommend relevant information and commodities to the user according to the user’s hobbies and purchase behavior.As user-generated content UGC gradually becomes the mainstream of current Web applications,recommendations based on UGC have also received widespread attention.Different from the binary interaction between user and item in traditional recommendation,the existing UGC recommendation adopts collaborative filtering method to propose a ternary interaction between consumer,item and producer,thereby improving the accuracy of recommendation,but most of the algorithms focus on the recommended performance and ignore the research on robustness.Therefore,by combining the ideas of adversarial learning and collaborative filtering,a collaborative filtering recommendation algorithm based on adversarial learning is proposed.First,the adversarial disturbance is added to the ternary relationship model parameters to make the performance of the model the worst.At the same time,the adversarial learning method is used to train the model to achieve the purpose of improving the robustness of the recommendation model.Secondly,an efficient algorithm is designed used to transform the parameters required by the model.Finally,it is tested on two public data sets generated by Reddit and Pinterest.The experimental results show that under the same parameter settings,compared with the existing algorithms,the AUC,Precision and Recall indicators of the proposed algorithm have been significantly improved,verifying its feasibility and effectiveness.The algorithm not only enhances the recommendation performance,but also improves the robustness of the model.
关 键 词:推荐系统 UGC 矩阵分解 对抗性学习 协同过滤
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171