检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:仲国民[1] 孙明轩[1] ZHONG Guomin;SUN Mingxuan(College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China)
出 处:《电子与信息学报》2021年第9期2594-2600,共7页Journal of Electronics & Information Technology
基 金:国家自然科学基金(62073291)。
摘 要:针对Wiener非线性时变系统的参数辨识问题,该文提出一种基于重复轴的迭代学习算法来实现对时变甚至突变参数的估计。文中将维纳系统输出非线性部分的反函数进行多项式展开,进而构造了回归模型,未知参数及中间变量用其估计替代,分别给出了采用迭代学习梯度算法和迭代学习最小二乘算法实现时变参数辨识的方法。仿真结果表明,与带遗忘因子的递推算法和迭代学习梯度算法相比,迭代学习最小二乘算法更具有参数估计收敛速度快,辨识精度高,系统输出误差小等优势,验证了所提学习算法的有效性。For the parameters identification of Wiener nonlinear time-varying systems, iterative learning algorithms based on repeated axes are proposed to estimate the time-varying or even abrupt parameters. At first, the output nonlinear part of the Wiener system undertaken is tackled based on polynomial expansion, and then the regression model is constructed, the unknown parameters and intermediate variables are replaced by their estimates. Both iterative learning gradient and iterative learning least square algorithms are used to conduct the identification of the time-varying systems. Compared with the recursive algorithm with forgetting factor and iterative learning gradient algorithm, the simulation results demonstrate that the iterative learning least squares algorithm can perform high identification accuracy and efficiency, being of fast convergence speed and less resultant system output error, which verifies the effectiveness of the proposed algorithm.
关 键 词:时变参数 Wiener系统 梯度算法 最小二乘 迭代学习
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.248