检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:韩冰冰[1] HAN Bingbing(Department of Basic Science, Panjin Vocational and Technical College, Panjin 124000, China)
机构地区:[1]盘锦职业技术学院基础部,辽宁盘锦124000
出 处:《安阳师范学院学报》2021年第5期5-8,共4页Journal of Anyang Normal University
基 金:2020年盘锦职业技术学院校级课题(项目编号PJZYKYKT202023)。
摘 要:采用矩形有限元方法离散泊松方程,形成粗网格和细网格,对粗网格精确求解,然后采用三次样条插值为细层提供初始值,构造出一类求解二维泊松方程的瀑布型二重网格法,并结合数值实验讨论不同粗细网格情况下算法的计算效率。结果表明,只需要使用节点较少的粗网格插值算子、磨光算子就能有效求出节点较多细网格上的数值解,改进的算法耗时更短。The rectangular finite element method is used to discretize the Poisson equation to form a coarse grid and a fine grid.The coarse grid is accurately solved,and then the cubic spline interpolation is used to provide the initial value for the fine layer,and a class of solving the two-dimensional Poisson equation is constructed.The waterfall-type double-grid method is combined with numerical experiments to discuss the computational efficiency of the algorithm under different grid thicknesses.The results show that only the coarse grid interpolation operator and the polishing operator with fewer nodes can effectively obtain the numerical solution on the fine grid with more nodes,and the time-consuming improvement of the algorithm is shorter.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.65