检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋灵宇[1] 武莉莉 卢梦双 SONG Ling-yu;WU Li-li;LU Meng-shuang(College of Science,Chang an University,Xi an 710064,Shaanxi,China)
出 处:《西北师范大学学报(自然科学版)》2021年第6期31-37,44,共8页Journal of Northwest Normal University(Natural Science)
基 金:陕西省自然科学基金资助项目(2019JQ-755)。
摘 要:分别采用重心Lagrange插值配点法和重心有理插值配点法求解二维Sobolev方程的数值解.首先,对Sobolev方程在时间方向和空间方向均采用两种插值配点法进行离散,并构造出Sobolev方程的重心插值配点法数值格式;其次,依次选取第二类Chebyshev节点和等距节点进行数值计算,并比较两种插值法在不同节点类型下所得数值解的精度.数值实验结果表明:选取第二类Chebyshev节点时,两种插值法所得数值解的逼近效果都比较好;当选取等距节点时,重心有理插值仍能保持高精度和良好的数值稳定性,而重心Lagrange插值却无法达到.The Lagrange interpolation collocation method and the rational interpolation collocation method are respectively used to solve the numerical solution of the two-dimensional Sobolev equation.First,the Sobolev equation is discretized by two interpolation collocation methods in the time direction and the space direction,and the numerical scheme of the Sobolev equation is constructed.Secondly,select the second type of Chebyshev node and the equidistant node for numerical calculation,and compare the accuracy of the numerical solutions obtained by the two interpolation methods under different node types.Numerical results show that:when selecting the second type of Chebyshev node,the approximation effect of the numerical solution is better;when equidistant nodes are selected,the rational interpolation can still maintain high precision and good numerical stability,but the Lagrange interpolation can not be achieved.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.131.95.159