检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈涛 宫金良[1] 张彦斐 CHEN Tao;GONG Jinliang;ZHANG Yanfei(School of Mechanical Engineering,Shandong University of Technology,Zibo Shandong 255049,China;School of Agricultural Engineering and Food Science,Shandong University of Technology,Zibo Shandong 255049,China)
机构地区:[1]山东理工大学机械工程学院,山东淄博255049 [2]山东理工大学农业工程与食品科学学院,山东淄博255049
出 处:《激光杂志》2022年第1期33-38,共6页Laser Journal
基 金:国家自然科学基金(No.61303006);山东省重点研发计划项目(No.2019GNC106127);淄博市生态无人农场研究院项目(No.2019ZBXC200)。
摘 要:为解决移动机器人对非结构化道路识别的准确性、实时性问题,提出了改进的超像素聚类与支持向量机融合的监督修正算法。首先对采集的道路图像进行预处理,仅在此道路的显著性区域内进行图像的平滑处理,然后基于改进的线性迭代聚类算法,将图像分割为内部像素较为一致的若干超像素单元,根据灰度差准则进行超像素的合并,以超像素块作为训练样本集,加快了支持向量机(SVM)分类器的训练学习速度,提取合并后的超像素颜色、纹理特征作为分类器训练集,构造SVM道路分类器并在测试集中进行分类识别,最后根据建立的评估函数对分类结果实时修正,保障了分类识别的准确率。实验表明,该算法的分类效果精确度高,且具有良好的实时性和鲁棒性。In order to solve the problem of recognition accuracy and real-time performance of intelligent vehicles on unstructured roads, an improved superpixel clustering and SVM fusion algorithm is proposed. Firstly, the acquired image was preprocessed, the road image is smoothed within the significance region. Then, based on the improved linear iterative clustering algorithm, the image is segmented into several superpixel units with relatively consistent internal pixels, the superpixels are merged according to the gray difference criterion, Taking the superpixel block as the training sample set, the training learning speed of SVM classifier is accelerated, the merged hyperpixel color and texture features are extracted as the classifier training set, the SVM road classifier was constructed and identified in the test set. Finally, the classification results are modified in real time according to the established evaluation function, which ensures the accuracy of classification recognition. The experimental results show that the algorithm has high classification accuracy, good real-time performance and robustness.
关 键 词:非结构化道路 聚类算法 特征提取 超像素 支持向量机
分 类 号:TN209[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49