检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林益 Jeffrey Yi-Lin(Department of Accounting Economics Finance Pennsylvania State System of Higher Education at Slippery Rock,Slippery Rock,PA 16057,USA)
机构地区:[1]宾夕法尼亚州立高等教育系统滑岩分校,美国宾夕法尼亚滑岩16057
出 处:《纯粹数学与应用数学》2021年第4期379-393,共15页Pure and Applied Mathematics
基 金:国家自然科学基金(11371292)。
摘 要:研究实无穷和潜无穷以及它们是否相等.在构建了一个范例来证明这两个概念可以导致不同的答案之后,研究假设它们相同或不同所能够带来的影响.然后检查现代数学是如何根据需要选择性的应用这两个假设.基于讨论结果,重新审视伯克利(Berkeley)悖论和罗素(Russell)悖论,并发现前者的阴影仍然存在于现代数学体系中,而后者仅仅是一个自相矛盾的命题和谬论.This paper studies the concepts of actual and potential infinities by addressing whether or not they are different from each other. After constructing an example that shows how these concepts can and do lead to different answers, we look at the impacts of assuming either that they are the same or that they are different. Then, we turn our attention to checking how the current state of affairs of modern mathematics unconsciously applies both of these two assumptions simultaneously depending on which one is needed to produce desired conclusions. Based on the discussions of this paper, we pay a new visit to the Berkeley and Russell′s paradoxes and find that the shadow of the former paradox still presently lingers, while the latter is nothing but simply a self-contradictory proposition and a fallacy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.230.40