检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘雨青[1] 向军 曹守启[1] LIU Yu-qing;XIANG Jun;CAO Shou-qi(College of Engineering,Shanghai Ocean University,Shanghai 201306,China)
出 处:《计算机工程与科学》2022年第3期536-544,共9页Computer Engineering & Science
基 金:国家重点研发计划(2019YFD0900803)。
摘 要:为解决水下机器人AUV自主航行问题,在水底环境状态已知的条件下,利用一种改进的蚁群算法研究AUV在复杂水底环境下的路径规划问题。首先基于栅格法建立水下三维环境模型,在该模型中每只蚂蚁采用分层前进与栅格平面法相结合的搜索模式搜索路径。根据水下自主机器人的速度和在水底的受力情况,来确定水下机器人能耗模型和路径规划的数学模型。在传统蚁群算法的基础上,基于Dijkstra算法改进初始信息素分配,考虑到水下水流的作用,不同的路径点消耗的能量有所差异,因此构造新的启发函数来消除这种影响。通过基于线性回归的信息素更新方式来优化算法的收敛速度及求解质量。最后在使用改进的蚁群算法规划出来的路径基础上,采用贝塞尔曲线改善路径的平滑性,以便于AUV跟踪该路径。实验结果表明,改进的蚁群算法具有较强的全局搜索能力,收敛速度明显加快,规划出的路径明显优于传统蚁群算法和遗传算法的,适合水下机器人的路径规划。In order to solve the autonomous navigation problem of AUV,an improved ant colony optimization algorithm is used to study the path planning problem of AUV in complex underwater environment.Firstly,an underwater three-dimensional environment model is established based on the grid method.In this model,each ant uses the combination of layered forward and grid plane method to search the path.The energy consumption model and path planning mathematical model of AUV are determined by the speed of AUV and the force on the bottom.Based on the traditional ant colony algorithm,Dijkstra algorithm is used to improve the initial pheromone allocation.Considering the effect of underwater flow,the energy consumption of different path points is different,so a new heuristic function is constructed to eliminate the influence.The convergence speed and solution quality of the algorithm are optimized by pheromone replacement based on linear regression.Finally,based on the path planned by the improved ant colony algorithm,Bessel curve is used to improve the smoothness of the path,so as to facilitate AUV to track the path.The experimental results show that the improved ant colony algorithm has strong global search ability,the convergence speed is significantly faster,and the path planning is obviously better than the traditional ant colony algorithm and genetic algorithm,which is suitable for the path planning of underwater vehicles.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222