检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孟磊 吴芝亮 王轶强 MENG Lei;WU Zhiliang;WANG Yiqiang(School of Mechanical Engineering, Tianjin University, Tianjin 300354, China)
出 处:《机械科学与技术》2022年第2期178-185,共8页Mechanical Science and Technology for Aerospace Engineering
基 金:国家自然科学基金项目(51205277)。
摘 要:为了提高多机器人环境探测的效率和精度,本文提供了一种基于部分可观马尔可夫决策过程(Partially observable markov decision process,POMDP)的路径规划方法来控制多个装有传感器的机器人实现对环境的协同探测。建立了多机器人环境探测系统的POMDP模型,以信息熵作为回报函数,令机器人沿着信息熵最大的方向不断移动。机器人对环境的信念采用非参数的、基于样本的表示,并用贝叶斯滤波来更新机器人对环境的信念。在仿真试验中,对两种环境的CO浓度进行了探测,都得到了精确的测量结果。与传统的全覆盖路径规划的方法相比,该方法在效率和精度上都具有优势。To improve the efficiency and accuracy for exploring a multi-robot environment,this paper proposes a path planning method based on the partially observable Markov decision process(POMDP)to control multiple robots equipped with sensors and to realize the coordinated exploration of the environment.Taken information entropy as the return function,the multi-robot environment exploration system based on the POMDP is established to move the robots with the largest information gain in the direction.The robot′s belief in the environment uses a non-parametric,sample-based representation,and the Bayesian filtering is used to update the robot′s belief in the environment.With our simulation software,the CO concentration of the two environments was precepted.The exploration results are in a good agreement with the predesigned environment.Compared with the traditional full coverage path planning method,the system proposed in this paper has advantages in both efficiency and accuracy.
关 键 词:多机器人 环境探测 POMDP 贝叶斯滤波 路径规划
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.224.37.168