检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李步扬 Li Buyang(Department of Applied Mathematics,The Hong Kong Polytechnic University Hong Kong,China)
机构地区:[1]香港理工大学应用数学系,中国
出 处:《计算数学》2022年第2期145-162,共18页Mathematica Numerica Sinica
基 金:香港研资局优配研究金PolyU15300920(Research Grants Council of Hong Kong SAR,GRF Project No.PolyU15300920)资助.
摘 要:许多物理现象可以在数学上描述为受曲率驱动的自由界面运动,例如薄膜和泡沫的演变、晶体生长,等等.这些薄膜和界面的运动常依赖于其表面曲率,从而可以用相应的曲率流来描述,其相关自由界面问题的数值计算和误差分析一直是计算数学领域中的难点.参数化有限元法是曲率流的一类有效计算方法,已经能够成功模拟一些曲面在几类基本的曲率流下的演化过程.本文重点讨论曲率流的参数化有限元逼近,它的产生、发展和当前的一些挑战.Many physical phenomena can be mathematically described by curvature-driven free interface motions,such as the evolution of films and foams,crystal growth,and so on.The motion of these films and interfaces often depends on their surface curvature and therefore can be described by the corresponding curvature flows and geometric evolution equations.The numerical computation and error analysis of the related free interface problems are still challenging problems in the field of computational mathematics.The parametric finite element method is a class of effective computational methods for approximating curvature flows,and it has been successful in simulating the evolution of some basic curvature flows,including mean curvature flow,Willmore flow,surface diffusion,and so on.This article focuses on the parametric finite element approximation of curvature flows-its origin,development and some current challenges.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.81