检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁正友[1,2] 王璐 李轩昂[1] 杨锋 LIANG Zheng-you;WANG Lu;LI Xuan-ang;YANG Feng(School of Computer and Electronic Information, Guangxi University, Nanning 530004, China;Guangxi Key Laboratory of Multimedia Communications and Network Technology, Nanning 530004, China)
机构地区:[1]广西大学计算机与电子信息学院,广西南宁530004 [2]广西多媒体通信与网络技术重点实验室,广西南宁530004
出 处:《计算机与现代化》2022年第5期90-95,共6页Computer and Modernization
基 金:国家自然科学基金资助项目(61861004)。
摘 要:针对传统迭代最近点(Iterative Closest Point,ICP)算法在初始空间位置偏差大时,容易陷入局部最优的问题,提出一种基于改进PSO-TrICP算法的点云配准方法。首先,对传统粒子群(Particle Swarm Optimization,PSO)算法进行改进,引入适应度的相似度测量准则调整粒子的更新方式,然后加入历次迭代的全局最优解的均值作为新的学习因子避免求解过程中出现“早熟”现象;其次用刚性变换参数和点云间的重叠率组成粒子,利用改进PSO算法为配准提供良好的初始相对位置;最后,通过裁剪迭代最近点(Trimmed Iterative Closest Point,TrICP)算法估计点云间的空间变换。实验结果表明,改进PSO-TrICP算法的配准精度与运行效率优于近年提出的同类配准算法,且具有较好的鲁棒性。Aiming at the problem that the traditional iterative closest point(ICP)algorithm is easy to fall into the problem of local optimality when the initial spatial position deviation is large,a point cloud registration method combining improved PSO-TrICP algorithm is proposed.Firstly,the traditional particle swarm optimization(PSO)algorithm is improved by introducing similarity measurement criterion of fitness to adjust the updating mode of particles.Then,the mean value of the historical global optimal solution of each iteration is added as a new learning factor to avoid the phenomenon of“precocity”;Secondly,the rigid transformation parameters and the overlap rate between the point clouds are used to form the particles,and the improved PSO algorithm is used to provide a good initial relative position;Finally,the space transformation between point clouds is estimated with trimmed iterative closest point(TrICP)algorithm.Experimental results show that the improved PSO-TRICP algorithm has better registration accuracy and operation efficiency than the similar registration algorithms proposed in recent years,and has better robustness.
关 键 词:点云配准 粒子群算法 迭代最近点算法 裁剪迭代最近点算法 刚性配准
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.22.120.195