高二学生掌握化学平衡命题的潜在类别分析和Apriori算法研究  被引量:3

Latent Class Analysis and Apriori Algorithm for Grade Eleventh Students’Mastery of Propositions Regarding Chemical Equilibrium

在线阅读下载全文

作  者:麦裕华[1] 钱扬义[1] 蓝海航 MAI Yu-Hua;QIAN Yang-Yi;LAN Hai-Hang(School of Chemistry,South China Normal University,Guangzhou 510006,China)

机构地区:[1]华南师范大学化学学院,广东广州510006

出  处:《化学教育(中英文)》2022年第17期100-107,共8页Chinese Journal of Chemical Education

基  金:2020年度广东省高等教育教学改革项目“化学卓越教师实验教学创新能力的‘四联动’培养范式——以教育部东芝杯全国师范大学化学教学创新大赛获奖作品为例”(粤教高函[2020]20号)。

摘  要:高中生对化学平衡的理解是重要且仍待深入探索的研究问题。潜在变量模型和数据挖掘有助于研究者从新角度了解学生的化学平衡概念学习情况。本研究使用自编的化学平衡命题测验,应用潜在类别分析和Apriori算法呈现722名高二年级学生对化学平衡命题的掌握情况。研究发现:(1)学生适合被分为3个组别,分别为高掌握水平组、中掌握水平组和低掌握水平组;(2)根据本研究设定的参数条件,未在高掌握水平组学生的作答中获得关联规则,在中掌握水平组和低掌握水平组学生的作答中获得了一些关联规则。潜在类别分析和Apriori算法可被用于化学概念学习和其他主题的研究。How high school students understand chemical equilibrium is an important research issue that still has to be deeply explored.Latent variable modeling and data mining are beneficial for researchers to understand students’concept learning of chemical equilibrium from a new perspective.With the self-made chemical equilibrium proposition test,this study utilized the latent class analysis and Apriori algorithm to represent 722 grade eleventh students’mastery of the propositions regarding chemical equilibrium.The findings showed that students were appropriate to be divided into three groups,which groups were named high level of mastery group,intermediate level of mastery group,and low level of mastery group.Based on the conditions of parameters set in this study,no association rule was found in the responses of the high level of mastery group but a few association rules were found in those of the other two groups.Latent class analysis and Apriori algorithm can be utilized to study the learning of chemistry concepts and other issues.

关 键 词:潜在类别分析 APRIORI算法 关联规则 命题 化学平衡 

分 类 号:G633.8[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象