基于PLKF的异质传感器分布式协同探测方法  

Distributed cooperative detection method of heterogeneous sensors based on PLKF

在线阅读下载全文

作  者:戚佳琳 张政 李清东[1] 董希旺[1,2] 蒋宏 任章[1] 韩亮[3] 于江龙 化永朝 Qi Jialin;Zhang Zheng;Li Qingdong;Dong Xiwang;Jiang Hong;Ren Zhang;Han Liang;Yu Jianglong;Hua Yongzhao(School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China;Institute of Artificial Intelligence,Beihang University,Beijing 100191,China;School of Sino-French Engineer,Beihang University,Beijing 100191,China)

机构地区:[1]北京航空航天大学自动化科学与电气工程学院,北京100191 [2]北京航空航天大学人工智能研究院,北京100191 [3]北京航空航天大学中法工程师学院,北京100191

出  处:《战术导弹技术》2022年第4期149-156,177,共9页Tactical Missile Technology

基  金:国家自然科学基金(61922008);北京自然科学基金(4182035)。

摘  要:针对电子战环境下有源定位跟踪易暴露的缺点和同质传感器探测的局限性,提出了一种基于伪线性卡尔曼滤波(PLKF)的异质传感器分布式协同探测方法。该方法以PLKF作为滤波方法,采用雷达-红外传感器协同探测,并提出了相应的分布式融合算法,融合了传感器时空配准后的多维度测量信息,实现了对目标高精度、强隐蔽性的探测。通过仿真实验,证实了该方法的合理性,对比并分析了滤波算法和传感器模型对探测精度的影响。结果表明,该方法可构建一个有效的多传感器协同探测网络,满足强抗干扰能力、高精度的目标探测需求。A distributed cooperative detection method based on pseudo linear kalman filter(PLKF)for heterogeneous sensors is proposed to solve the shortcomings of active location tracking and the limitations of homogeneous sensor detection in electronic warfare environment.In this method,PLKF is used as the filtering method,radar-infrared sensor cooperative detection is adopted,and the corresponding distributed fusion algorithm is proposed,which integrates the multi-dimensional measurement information of sensor space-time registration,so as to achieve the high-precision and strong hiding detection of the target.Simulation results demonstrate the the rationality of this method.The influence of filtering algorithm and sensor model on detection accuracy is compared and analyzed.The results show that this method can construct an effective multi-sensor cooperative detection network,which can meet the requirements of strong anti-interference ability and high precision target detection.

关 键 词:电子战环境 伪线性卡尔曼滤波 异质传感器 协同探测 分布式融合 时空配准 多维度测量信息 

分 类 号:TJ765.3[兵器科学与技术—武器系统与运用工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象