分裂四元数矩阵方程AXB+CYD=E的最小二乘η-埃尔米特解问题  

The Least Squares η-Hermitian Problems of Split Quaternion Matrix Equation AXB+CYD=E

在线阅读下载全文

作  者:张颖 王伟华 魏佳宁 张会生 ZHANG Ying;WANG Weihua;WEI Jianing;ZHANG Huisheng(School of Science,Dalian Maritime University,Dalian 116026)

机构地区:[1]大连海事大学理学院,大连116026

出  处:《工程数学学报》2022年第5期813-825,共13页Chinese Journal of Engineering Mathematics

基  金:国家自然科学基金(61671099)。

摘  要:分裂四元数矩阵方程求约束解问题在数学研究和物理应用中有重要的科学意义,针对分裂四元数矩阵的范数定义所造成的最小二乘解求解困难问题,研究了分裂四元数矩阵方程AXB+CY D=E的最小二乘η-埃尔米特解。首先定义分裂四元数反对合变换和η-埃尔米特矩阵,其次引入分裂四元数矩阵的Frobenius范数,通过基于分裂四元数矩阵的复表示,解决最小二乘解的求解困难问题。最后利用矩阵的MoorePenrose广义逆以及Kronecker积,推导出分裂四元数矩阵方程的最小二乘η-埃尔米特解以及唯一极小范数解的表达式。数值实验验证了该方法的可行性。The split quaternion constrained matrix equation is an important problem in mathematical research and physical applications. To overcome the difficulty in obtaining the leastsquares solution of the split quaternion matrix equation, the least-squares η-Hermitian solution of the split quaternion matrix equation AXB +CY D = E is considered. Firstly, anti-involution transformation and η-Hermitian matrix based on split quaternion are defined. Secondly, the Frobenius norm of a split quaternion matrix is introduced based on the complex representation of a split quaternion matrix, which dissolves the aforementioned difficulty in solving the leastsquares solution. Finally, by applying the Moore-Penrose generalized inverse and Kronecker product of matrices, the least squares η-Hermitian solution and unique minimal norm solution of the split quaternion matrix equation are deduced. The feasibility of the proposed approach is verified by the numerical example.

关 键 词:分裂四元数矩阵 矩阵方程 KRONECKER积 MOORE-PENROSE广义逆 

分 类 号:O241.7[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象