局部域上高维射影空间态射的动力性质  

Dynamical Properties of Morphisms on Higher Dimensional Projective Space over Local Field

在线阅读下载全文

作  者:赵正俊 陈翔 Zheng Jun ZHAO;Xiang CHEN(School of Mathematics and Physics,Anqing Normal University,Anqing 246133,P.R.China)

机构地区:[1]安庆师范大学数理学院,安庆246133

出  处:《数学学报(中文版)》2022年第6期967-978,共12页Acta Mathematica Sinica:Chinese Series

基  金:国家自然科学基金资助项目(11971382);安徽省高校学科(专业)拔尖人才项目。

摘  要:设Cv是关于非阿绝对值完备的代数闭域,φ:P^(N)→P^(N)为定义在Cv上次数大于1的态射,Φ是φ的提升,GΦ是Φ的Green函数,ρ是P^(N)(Cv)上的弦度量.本文首先通过弦度量研究了高维射影空间中点的约化及线性分式约化的性质.利用Green函数0Φ定义了态射提升的算术距离,研究了算术距离的性质,给出了Φ具有好的约化的充要条件.同时,利用Green函数明确刻画了Φ的Filled Julia集.Let C_(v) be an algebraically closed non-archimedean field,complete with respect to a valuation v.Let φ:P^(N)→P^(N) be a morphism of degree greater than one defined over Cv,Φ a lift of φ.Let gΦ be the Green function of Φ and ρ the chordal metric on P^(N)(C_(v)).In this paper,we first study the properties of reduction of points in high dimensional projective space and reduction of automorphisms of P^(N) with degree one.With the help of Green function gΦ of Φ,we introduce the arithmetic distance of morphisms and investigate its property.The necessary and sufficient condition which Φ has good reduction is obtained in this paper.We also describe explicitly the Filled Julia set of Φ by its Green function.

关 键 词:局部域 态射 射影空间 GREEN函数 

分 类 号:O156.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象