检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:牟小凤 夏泽宇 李茂军 MOU Xiao-feng;XIA Ze-yu;LI Mao-jun(School of Mathematical Sciences,University of Electronic Science and Technology of China,Chengdu Sichuan 611731,China)
出 处:《西华师范大学学报(自然科学版)》2023年第1期32-41,共10页Journal of China West Normal University(Natural Sciences)
基 金:国家自然科学基金项目(11871139)。
摘 要:利用有限元(FEM)的空间离散和二阶向后差分公式(BDF)的时间离散,针对不可压Navier-Stokes方程设计了一种解耦格式。“解耦”技术是指在速度场方程中引入中间变量并对压力项进行显式处理,从而将速度场方程变为对称正定系统,再通过额外求解泊松方程得到压力项。通过添加修正项,得到了该数值格式的无条件能量稳定性,进而得到了其格式的唯一可解性。针对不可压Navier-Stokes方程的解耦格式,本文首次通过引入中间映射项对其进行了最优收敛估计。最后通过数值算例验证了该数值格式的精度和稳定性。This paper proposes a decoupled scheme for solving incompressible Navier-Stokes equations by a combination of finite element method(FEM) for spatial discretization and second-order backward differential formulation(BDF) for temporal discretization.The “decoupled” technique turns the flow equation into a symmetric positive definite system by introducing an intermediate variable and treating the pressure function explicitly, and then computes the pressure by solving a Poission-type equation.The unconditional energy stability and unique solvability of the numerical scheme are obtained by adding the correction term.It is the first time for the paper to get the optimal error estimates of decoupled scheme by introducing an intermediate variable for solving incompressible Navier-Stokes equations.In the end, several numerical examples are presented to verify the accuracy and stability of the numerical scheme.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43