检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:庄历
机构地区:[1]南京二十九中教育集团初级中学
出 处:《中学数学》2023年第2期72-74,共3页
摘 要:中学数学教育不仅要让学生获得必要的数学知识和技能,还要能让学生感悟数学的基本思想,积累数学思维活动和实践活动的经验.学生解题能力的高低,不仅可以反映其基本知识、基本技能的掌握情况,更可以反映其综合能力水平.而学生在解题实践中,常常无法找到解题的入口,不能搭建已知条件和未知结论之间的有效桥梁.因此,教师分析问题时的引导过程就显得尤为重要,只有从学生的主动思维渐渐推导出所有的可知和需知,找到连接可知和需知之间常用的模型支撑,才能教会学生正确的思考方法,积累探索问题的途径.本文中以2021年南京市中考中的一道几何作图题为例,通过对条件和结论的分析,以及对多种解法的探索,积累基本几何模型,提高学生的解题能力和综合分析能力.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.158.23