检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:薛龙[1] 李澜 党兆龙[2] 陈百超[2] 邹猛[3] 黎静[1] XUE Long;LI Lan;DANG Zhaolong;CHEN Baichao;ZOU Meng;LI Jing(School of Engineering,Jiangxi Agricultural University,Nanchang 330045,China;Institute of Spacecraft System Engineering,China Academy of Space Technology,Beijing 100094,China;Key Laboratory for Bionics Engineering of Education Ministry,Jilin University,Changchun 130022,China)
机构地区:[1]江西农业大学、工学院,江西南昌330045 [2]中国空间技术研究院、北京空间飞行器总体设计部,北京100094 [3]吉林大学、工程仿生教育部重点实验室,吉林长春130022
出 处:《光学精密工程》2023年第5期581-587,共7页Optics and Precision Engineering
基 金:国家自然科学基金项目(No.51865018);江西省自然科学基金项目(No.20192BAB206025)。
摘 要:火星表面地形地貌复杂,为了保证火星车行驶安全,需要对巡视器周边土壤的图像信息进行判别和分类。首先,根据试验场地和图像信息等对图像进行预处理,建立鸟瞰图像。接着,以鸟瞰图像为基础建立图像块并建立数据集,建模集和预测集分别包含315组和135组数据。然后,在划分的数据集基础上建立神经网络模型,并对数据进行训练和分类。最后,根据得到的分类模型对图像进行分类,得到感兴趣区域。分类结果表明:应用ResNet50得到的模型其建模集和预测集的分类准确率分别为75.56%和81.48%。该方法可实现巡视器周边地表类型的分类,并提取图像的感兴趣区域,以便实现更为精准的判别,可用于实现火星车通过性感知、风险预测和路径规划,为未来智能星球车移动系统研制和探测提供理论和技术支持。The geomorphological characterization of Mars is complex.Therefore,to ensure the safe driving of rover,it is essential to understand the surface state around the rover through images captured by onboard digital cameras.The images are first preprocessed using stereo vision to create an aerial view,which is then divided into equal-sized blocks.Next,calibration and prediction datasets are created,containing 315 and 135 datapoints,respectively.Based on these datasets,a neural network model is developed.Finally,the image is classified using the resulting classification model to identify the region of interest.The results of the classification show that its accuracy on the calibration and prediction datasets using ResNet50 is 75.56%and 81.48%,respectively.This method can help researchers characterize the surface types around UGVs and identify the regions of interest that may provide more valuable information from the images.It can also be used for traversability prediction,risk assessment,and automatic path planning.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术] TH691.9[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.14.187.136