检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张颖 乔贵方[1,2] 王保升[3] 刘娣[1] 田荣佳 ZHANG Ying;QIAO Guifang;WANG Baosheng;LIU Di;TIAN Rongjia(School of Automation,Nanjing Institute of Technology,Nanjing 211167,China;School of Instrument Science and Engineering,Southeast University,Nanjing 210096,China;Research Department of Intelligent Manufacturing Equipment,Nanjing Institute of Technology,Nanjing 211167,China)
机构地区:[1]南京工程学院自动化学院,江苏南京211167 [2]东南大学仪器科学与工程学院,江苏南京210096 [3]南京工程学院智能制造装备研究院,江苏南京211167
出 处:《中国测试》2023年第3期91-95,103,共6页China Measurement & Test
基 金:国家自然科学基金项目(5190525);中国博士后科学基金(2019M650095);南京工程学院校级科研基金项目(CKJB202104)。
摘 要:针对在高端制造领域工业机器人绝对定位误差仍无法满足精度要求的问题,提出一种基于优化位姿集的机器人定位精度提升方法。首先,基于M-DH模型对待标定机器人Staubli TX60建立运动学模型,并基于位姿微分变换方法构建该机器人的运动学误差模型;其次,利用IOOPS算法优化筛选机器人的辨识位姿集;最后,提出一种基于PSO-LM优化算法的运动学参数辨识方法,并通过实验验证运动学参数辨识精度。实验结果表明:基于PSO-LM混合优化算法辨识后的TX60机器人的平均综合位置/姿态误差分别从(0.5777 mm,0.0039 rad)降低为(0.0816 mm,0.0014 rad)。该文提出的PSO-LM混合优化算法具有较好的辨识精度和收敛速度,并且基于优化辨识位姿集获取的运动学模型具有更好的泛化能力。A method to improve the positioning accuracy of robots based on the optimized pose set is proposed,aiming at the problem that the absolute positioning error of industrial robots in the high-end manufacturing field still cannot meet the accuracy requirement.Firstly,the kinematic model of the robot Staubli TX60 is built based on the M-DH model,and the kinematic error model is built based on the pose differential transformation.Secondly,the identification pose set of the robot is optimized and screened by using the IOOPS algorithm.Finally,a kinematic parameter identification method is proposed based on the PSO-LM optimization algorithm,and the accuracy of kinematic parameter identification is verified through experiments.The experimental results show that the average comprehensive position/attitude error of the TX60 robot after identification is reduced from(0.5777 mm,0.0039 rad)to(0.0816 mm,0.0014 rad)based on the PSO-LM hybrid optimization algorithm.The PSO-LM hybrid optimization algorithm proposed in this paper has better identification accuracy and convergence speed,and the obtained kinematic model based on the optimized identification pose set has better generalization ability.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30