检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李明宇 张九能 母仕波 钱淑渠 LI Mingyu;ZHANG Jiuneng;MU Shibo;QIAN Shuqu(School of Mathematical Sciences,Guizhou Normal University,Gui'an New District Guizhou 550025;School of Mathematics and Physics,Anshun University,Anshun Guizhou 561000)
机构地区:[1]贵州师范大学数学科学学院,贵州贵安新区550025 [2]安顺学院数理学院,贵州安顺561000
出 处:《辽宁师专学报(自然科学版)》2023年第2期8-12,108,共6页Journal of Liaoning Normal College(Natural Science Edition)
基 金:2021年安顺学院研究生创新专项基金资助项目(asxyyjscx2021107);2022年安顺市基础教育教学改革联合基金项目(2022LHZX065)。
摘 要:为了解初中生对数学思想方法的理解和掌握情况,选取安顺地区3所乡镇中学的275名八年级学生作为研究对象.从学生数学学习态度、对数学思想方法的认知情况和应用意识,以及数学思想方法的教学情况(学生角度)等方面进行调查.结果显示:学生数学学习态度一般;对数学思想方法的认知和应用意识相对较弱;学生普遍认为教师都有在课堂上渗透数学思想方法.据此,给出相应的教学建议,为初中数学思想方法渗透的教学提供一定的参考.In order to understand the comprehension and mastery of mathematics thinking method of junior middle school students,275 students of Grade Eight from three township middle schools in Anshun area were selected as the research objects.Investigation was conducted from the students′attitude towards mathematics learning,their cognitive status and application consciousness of mathematics thinking method,as well as the teaching situation of mathematics thinking method(from the perspective of students).The results show that the students′attitude towards mathematics learning is average.The cognition and application consciousness of mathematics thinking method is relatively weak.Students generally believe that teachers have infiltrated mathematics thinking method in class.Based on this,relevant teaching suggestions were proposed to provide some reference for the infiltration of mathematics thinking method teaching in junior middle schools.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38