检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江苏第二师范学院数学科学学院,211222 [2]南京师范大学课程与教学研究所,210097 [3]南京师范大学数学科学学院,210046
出 处:《中学数学杂志》2023年第10期23-27,共5页
基 金:江苏省中小学教学研究课题“教师研究的理论思考与模式建构”(2021JY14_L390);安徽省2021年高校协同创新项目“‘双减’背景下教学和谐的理论证成、实践省察与行动建构”(GXXT_2021_058)。
摘 要:DNR系统包含三个基本原则:对偶性(Duality)原则、必要性(Necessity)原则和重复推理(Repeated-reasoning)原则,其关注知识或思维的关联性、进阶性及情境性.基于DNR理论视角对反证法进行探析,有助于反证法系统运用于数学教学.反证法的关键是推出矛盾,假设中蕴含隐性的矛盾,通过推理将隐性的矛盾变成显性的矛盾;其以矛盾律和排中律为逻辑基础,从辩证思维的观点出发,克服思维定势,运用逆向思维去分析问题和解决问题.在反证法的学习中,学生需要突破原有思维定势,内化形成反证法解决问题的思维方式.在初中数学教学中,反证法思维方法的运用需要基于学生的学习进阶,关注数学知识与真实情境关联性;其运用过程指向,培养学生的逻辑思维能力,提高学生思维的严谨性,提升学生的推理能力和解决问题的能力.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.132.105