动态环境下基于语义信息与几何约束的视觉SLAM系统  被引量:1

Visual SLAM based on semantic information and geometric constraints in dynamic environment

在线阅读下载全文

作  者:李嘉铭 解明扬 张民[1] 王从庆[1] LI Jiaming;XIE Mingyang;ZHANG Min;WANG Congqing(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)

机构地区:[1]南京航空航天大学自动化学院,江苏南京211106

出  处:《智能科学与技术学报》2023年第4期477-485,共9页Chinese Journal of Intelligent Science and Technology

基  金:启元实验室创新基金项目(No.S20210201102);南京航空航天大学科研与实践创新计划(No.xcxjh20220342)。

摘  要:目前同时定位与地图构建技术多假设外部环境是静态的,忽略了动态目标对SLAM系统的影响,这一假设很大程度上影响了无人系统自主导航的定位精度与鲁棒性。针对这一问题,提出了一种结合目标检测语义信息与多视图极线几何约束的动态SLAM系统,根据运动概率来判别与剔除系统中的动态特征点,并在TUM数据集及实机平台上进行了算法性能测试。实验结果表明在高动态环境下,该系统相较于ORB-SLAM2在绝对轨迹误差上至少可减小94%以上,相对位移轨迹和旋转角度误差分别至少降低了41%和40%,表明该算法能够有效剔除动态特征点,提高了动态环境下视觉SLAM系统的定位精度和鲁棒性。Most existing visual SLAM systems assume that the external environment is static,ignoring the influence of dynamic objects on the SLAM system.This assumption largely affects the accuracy and robustness of autonomous navigation.To address this issue,a dynamic SLAM system was proposed,which combined semantic information based on object detection and geometric information from multi-view geometry constraints by defining and discriminating the dynamic feature points in the system based on the moving probability.Experiment results on the public TUM dataset and our robot in real environment showed that,when comparing with ORB-SLAM2,the absolute trajectory error could be reduced larger than 94%,and the average relative position and attitude errors were reduced at least 41%and 40%,respectively,in high dynamic environments.It means that the proposed SLAM system effectively removes dynamic feature points,thus improving the localization accuracy and robustness of the visual SLAM system within high dynamic environments.

关 键 词:动态SLAM 深度学习 目标检测 极线几何 

分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象