检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李嘉铭 解明扬 张民[1] 王从庆[1] LI Jiaming;XIE Mingyang;ZHANG Min;WANG Congqing(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
机构地区:[1]南京航空航天大学自动化学院,江苏南京211106
出 处:《智能科学与技术学报》2023年第4期477-485,共9页Chinese Journal of Intelligent Science and Technology
基 金:启元实验室创新基金项目(No.S20210201102);南京航空航天大学科研与实践创新计划(No.xcxjh20220342)。
摘 要:目前同时定位与地图构建技术多假设外部环境是静态的,忽略了动态目标对SLAM系统的影响,这一假设很大程度上影响了无人系统自主导航的定位精度与鲁棒性。针对这一问题,提出了一种结合目标检测语义信息与多视图极线几何约束的动态SLAM系统,根据运动概率来判别与剔除系统中的动态特征点,并在TUM数据集及实机平台上进行了算法性能测试。实验结果表明在高动态环境下,该系统相较于ORB-SLAM2在绝对轨迹误差上至少可减小94%以上,相对位移轨迹和旋转角度误差分别至少降低了41%和40%,表明该算法能够有效剔除动态特征点,提高了动态环境下视觉SLAM系统的定位精度和鲁棒性。Most existing visual SLAM systems assume that the external environment is static,ignoring the influence of dynamic objects on the SLAM system.This assumption largely affects the accuracy and robustness of autonomous navigation.To address this issue,a dynamic SLAM system was proposed,which combined semantic information based on object detection and geometric information from multi-view geometry constraints by defining and discriminating the dynamic feature points in the system based on the moving probability.Experiment results on the public TUM dataset and our robot in real environment showed that,when comparing with ORB-SLAM2,the absolute trajectory error could be reduced larger than 94%,and the average relative position and attitude errors were reduced at least 41%and 40%,respectively,in high dynamic environments.It means that the proposed SLAM system effectively removes dynamic feature points,thus improving the localization accuracy and robustness of the visual SLAM system within high dynamic environments.
分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145